Resumo
As operações militares causam diversas violações no sistema de segurança do Estado, incluindo um aumento da atividade criminosa. Isto exige respostas melhoradas e inovadoras a infracções e crimes, que incluem a simulação computacional forense de infracções. O objetivo deste trabalho é determinar uma abordagem para o desenvolvimento de um modelo computacional forense de crimes no contexto de operações militares e avaliar as suas potenciais vantagens. A pesquisa envolveu o método de observação estatística, o método de rating, a análise de riscos e potenciais falhas utilizando o modelo FMEA. A investigação realizada revelou um aumento da taxa de criminalidade na Ucrânia após a invasão em grande escala. O aumento de quase nove vezes no número de crimes particularmente graves exige atenção especial. Isto deu motivos para propor as direções de aplicação do método de simulação computacional forense de crimes - previsão e análise de crimes, simulação geoinformacional, etc. Um algoritmo para o desenvolvimento de um modelo computacional forense para previsão de atos terroristas no contexto de um conflito militar é proposto. Nota-se que a eficácia deste modelo depende da correta identificação e avaliação de possíveis riscos para o sistema de segurança, o que se propõe a ser realizado através do modelo FMEA. A aplicação do modelo FMEA para previsão de atos terroristas é a novidade do estudo.
Referências
AL-DHAQM, A., ABD RAZAK, S., OTHMAN, S. H., ALI, A., GHALEB, F. A., ROSMAN, A. S., MARNI, N. Database forensic investigation process models: A review. IEEE Access, v. 8, p. 48477-48490, 2020. https://doi.org/10.1109/ACCESS.2020.2976885
BABUTA, A., OSWALD, M. Data analytics and algorithms in policing in England and Wales: Towards a new policy framework. 2020. Available at: http://nrl.northumbria.ac.uk/id/eprint/42903 Accessed on: 05 Nov. 2023.
BEN HASSEN, T., EL BILALI, H. Impacts of the Russia-Ukraine war on global food security: towards more sustainable and resilient food systems? Foods, v. 11, n. 15, p. 2301, 2022. https://doi.org/10.3390/foods11152301
BOUBAKER, S., GOODELL, J. W., PANDEY, D. K., KUMARI, V. Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine. Finance Research Letters, v. 48, p. 102934, 2022. https://doi.org/10.1016/j.frl.2022.102934
CASEY, E. The chequered past and risky future of digital forensics. Australian Journal of Forensic Sciences, v. 51, n. 6, p. 649-664, 2019. https://doi.org/10.1080/00450618.2018.1554090
CHYRENKO, M. Another side of the coin: how the war affected the crime rate. 2023. Available at: https://www.dsnews.ua/ukr/politics/shche-odin-bik-medali-yak-viyna-vplinula-na-riven-zlochinnosti-27022023-475107 Accessed on: 05 Nov. 2023.
DALY, S. Z., PALER, L., SAMII, C. Wartime ties and the social logic of crime. Journal of Peace Research, v. 57, n. 4, p. 536-550, 2020. https://doi.org/10.1177/0022343319897098
DASAKLIS, T. K., CASINO, F., PATSAKIS, C. SoK: Blockchain solutions for forensics. In Technology Development for Security Practitioners. Cham: Springer, 2021, p. 21-40. https://doi.org/10.1007/978-3-030-69460-9_2
FREEMAN, L. Digital evidence and war crimes prosecutions: the impact of digital technologies on international criminal investigations and trials. Fordham Int'l LJ, v. 41, p. 283, 2017. Available at: https://ir.lawnet.fordham.edu/ilj/vol41/iss2/1 Accessed on: 05 Nov. 2023.
GOSTIN, L. O., RUBENSTEIN, L. S. Attacks on health care in the war in Ukraine: International law and the need for accountability. JAMA, v. 327, n. 16, p. 1541-1542, 2022. https://doi.org/10.1001/jama.2022.6045
HO, H., KO, R., MAZEROLLE, L. Situational Crime Prevention (SCP) techniques to prevent and control cybercrimes: A focused systematic review. Computers & Security, v. 115, p. 102611, 2022. https://doi.org/10.1016/j.cose.2022.102611
HOANG, N. D., HUYNH, T. C., TRAN, V. D. Computer vision-based patched and unpatched pothole classification using machine learning approach optimized by forensic-based investigation metaheuristic. Complexity, v. 2021, p. 1-17, 2021. https://doi.org/10.1155/2021/3511375
JAFARI, F., SATTI, R. S. Comparative analysis of digital forensic models. Journal of Advances in Computer Networks, v. 3, n. 1, p. 82-86, 2015. https://doi.org/10.7763/JACN.2015.V3.146
JARRETT, A., CHOO, K. K. R. The impact of automation and artificial intelligence on digital forensics. Wiley Interdisciplinary Reviews: Forensic Science, v. 3, n. 6, p. e1418, 2021. https://doi.org/10.1002/wfs2.1418
JIN, G., WANG, Q., ZHU, C., FENG, Y., HUANG, J., ZHOU, J. Addressing crime situation forecasting task with temporal graph convolutional neural network approach. In: 2020 12th International Conference on Measuring Technology and Mechatronics Automation. IEEE: 2020, p. 474-478. https://doi.org/10.1109/ICMTMA50254.2020.00108
KOENIG, A., IRVING, E., MCDERMOTT, Y., MURRAY, D. New technologies and the investigation of international crimes: An introduction. Journal of International Criminal Justice, v. 19, n. 1, p. 1-7, 2021. https://doi.org/10.1093/jicj/mqab040
KOLLA, V. R. K. A Comparative Analysis of OS Forensics Tools. International Journal of Research in IT and Management, v. 12, n. 4, 2022. Available at: https://ssrn.com/abstract=4413730 Accessed on: 05 Nov. 2023.
KORNIIENKO, V. V. Forensic 3D modeling of the scene. In: Theoretical issues of jurisprudence and problems of law enforcement: challenges of the 21st century. Theses of the reports of the participants of the 3rd All-Ukrainian Scientific and Practical Conference. Public Policy and Social Sciences Research Institute, 2020, p. 165-167. Available at: https://dspace.univd.edu.ua/server/api/core/bitstreams/e2172522-77cc-48a2-bcb2-aa47fec76578/content#page=165 Accessed on: 05 Nov. 2023.
KUMAR, S., PATHAK, S. K., SINGH, J. A Comprehensive Study of XSS Attack and the Digital Forensic Models to Gather the Evidence. ECS Transactions, v. 107, n. 1, p. 7153, 2022. https://doi.org/10.1149/10701.7153ecst
MBAH, R. E., WASUM, D. F. Russian-Ukraine 2022 War: A review of the economic impact of Russian-Ukraine crisis on the USA, UK, Canada, and Europe. Advances in Social Sciences Research Journal, v. 9, n. 3, p. 144-153, 2022. https://doi.org/10.14738/assrj.93.12005.
MILIVOJEVIC, S., RADULSKI, E. M. The ‘future Internet’ and crime: towards a criminology of the Internet of Things. Current Issues in Criminal Justice, v. 32, n. 2, p. 193-207, 2020. https://doi.org/10.1080/10345329.2020.1733452
NUMBEO. Crime Index by Country 2023. 2023. Available at: https://www.numbeo.com/crime/rankings_by_country.jsp Accessed on: 05 Nov. 2023.
OZKAN, T. Criminology in the age of data explosion: New directions. The Social Science Journal, v. 56, n. 2, p. 208-219, 2019. https://doi.org/10.1016/j.soscij.2018.10.010
PODOBNYI, O. O., SLATVINSKA, V. M. Main tasks of informatization of law enforcement activities. Juridical Scientific and Electronic Journal, v. 9, p. 180-182, 2021. https://doi.org/10.32782/2524-0374/2021-9/43
PRATHAP, B. R. Geospatial crime analysis and forecasting with machine learning techniques. In: Artificial intelligence and machine learning for EDGE computing. Academic Press, 2022, p. 87-102. https://doi.org/10.1016/B978-0-12-824054-0.00008-3
RAWTANI, D., GUPTA, G., KHATRI, N., RAO, P. K., HUSSAIN, C. M. Environmental damages due to war in Ukraine: A perspective. Science of the Total Environment, v. 850, p. 157932, 2022. https://doi.org/10.1016/j.scitotenv.2022.157932
REN, L., ZHAO, J. S., HE, N. P. Broken windows theory and citizen engagement in crime prevention. Justice quarterly, v. 36, n. 1, p. 1-30, 2019. https://doi.org/10.1080/07418825.2017.1374434
SHUKLA, S., JAIN, P. K., BABU, C. R., PAMULA, R. A multivariate regression model for identifying, analyzing and predicting crimes. Wireless Personal Communications, v. 113, p. 2447-2461, 2020. https://doi.org/10.1007/s11277-020-07335-w
SOKURENKO, V. V. Peculiarities of the use of information technologies in forensics. In: Application of information technologies in law enforcement activities: materials of the Round Table. Kharkiv: KhNUVS, 2022, p. 8–12. Available at: http://dspace.univd.edu.ua/xmlui/handle/123456789/15146 Accessed on: 05 Nov. 2023.
XU, Z., CHENG, C., SUGUMARAN, V. Big data analytics of crime prevention and control based on image processing upon cloud computing. Journal of Surveillance, Security and Safety, v. 1, p. 16-33, 2020. https://doi.org/10.20517/jsss.2020.04
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright (c) 2023 Lex Humana (ISSN 2175-0947)