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Abstract: Sir Isaac Newton, writing in Latin, defined his celebrated laws of motion verbally. 
When the laws of motion are read as relating to his arithmetic (the Arithmetica Universalis) and 
his calculus (the method of fluxions), division by zero is undefined so his physics fails at 
mathematical singularities. The situation is unchanged in modern real arithmetic and real 
calculus: division by zero is undefined so both Newtonian Physics and its modern developments 
fail at mathematical singularities. However, when Newton’s text is read as relating to transreal 
arithmetic and transreal calculus, division by zero is defined and we show that the resulting 
Transreal Newtonian Physics does operate at mathematical singularities. We hold out the hope 
that the whole of modern physics may be similarly extended. We use the new physics to predict 
a convection current at the singularity in a black hole and suggest experiments in astronomy and 
high energy physics that might confirm or rebut our predictions. Thus our exegesis of Newton’s 
text extends mathematical physics and may, in future, extend experimental physics. 
 
Keywords: Transreal numbers; Non-finite force; Newton’s laws of motion.  
 
Resumo: Sir Isaac Newton, escrevendo em latim, definiu verbalmente suas célebres leis do 
movimento. Quando as leis do movimento são lidas relativas à sua aritmética (a Arithmetica 
Universalis) e ao seu cálculo (o método das fluxões), a divisão por zero não é definida. Assim, a 
física de Newton falha em singularidades matemáticas. Esta situação se mantém na aritmética e 
cálculo real modernos: a divisão por zero é indefinida e, por isso, tanto a física newtoniana 
quanto seus desenvolvimentos modernos falham em singularidades matemáticas. No entanto, 
quando o texto de Newton é lido relativo à aritmética transreal e ao cálculo transreal, a divisão 
por zero é bem definida. Desta forma, mostramos que a Física Newtoniana Transreal resultante 
opera em singularidades matemáticas. Esperamos que toda a física moderna possa ser estendida 
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de forma análoga. Usamos esta nova física para prever uma corrente de convecção na 
singularidade em um buraco negro e sugerimos experimentos em astronomia e física de alta 
energia que podem confirmar ou refutar nossas previsões. Portanto, nossa exegese do texto de 
Newton estende a física matemática e poderá, no futuro, estender a física experimental. 
 
Palavras-chave: Números transreais; Força não-finita; Leis do movimento de Newton. 
 
 
 

1. Introdução 

 

Newton worked substantially in Latin but his celebrated Principia (NEWTON, 1760) and 

many of his mathematical papers are available in English translation (COHEN and 

WHITMAN, 1999) (WHITESIDE, 1974). We know what arithmetical techniques Newton used 

because he left many pages of manuscript computation and his lecture notes on arithmetic 

(algebra) survive. His arithmetic became known as the Arithmetica Universalis, see 

(WHITESIDE, 1974, v. 5) and, for our purposes, especially pages 61-107. The Arithmetica 

Universalis differs from modern, real arithmetic, not in terms of numerical results but in 

algebraic scope, as we show in the Section Arithmetica Universalis, but it shares the property 

that division by zero is undefined. We suppose, therefore, that Newton could not divide by 

zero. This view is supported, to an extent, by Newton's early notes on indivisibles in which he 

records division with a zero that is not the zero of modern, real arithmetic but is an abstract 

symbol in an inchoate account of infinitesimal numbers. Hence Newton could find limits of 

some functions whose denominator tends asymptotically to zero but could not divide by an exact 

zero. Exact division by zero is undefined in Newton's fluxions and in both modern real and 

complex analysis. Consequently, we suppose, Newton read his three laws of motion as failing 

on division by zero, as many modern readers continue to do. Transreal and transcomplex 

arithmetic are developments of Computer Science that are now being normalised in 

Mathematics (ANDERSON and REIS, 2014) (GOMIDE and REIS, 2013) (REIS, 2014) (REIS 

and ANDERSON, 2014a, 2014b, 2015) (REIS et al, 2013). They define division in terms of 

operations on the lexical reciprocal. This lexical definition contains the usual definition of 

division, as multiplication by the multiplicative inverse, but also defines division by zero. 

Consequently transreal and transcomplex arithmetic are supersets of, respectively, real and 

complex arithmetic. There is a machine proof that transreal arithmetic is consistent if real 

arithmetic is (ANDERSON et al, 2007).  The consistency of the sets of transreal and 
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transcomplex numbers is also ensured by their constructions from the real and complex 

numbers (REIS and ANDERSON, 2014b). We show, in the Sections Laws of Motion and 

Discussion, how to express Newton's three laws of motion in transreal arithmetic so that they 

are defined on division by zero. 

Transreal arithmetic uses a subset of the algorithms of real arithmetic so the general reader 

will be able to follow any computation in transreal arithmetic but will have little chance of 

deriving a valid computation until the axioms (ANDERSON et al, 2007) or algorithms 

(ANDERSON, 2011) of transreal arithmetic have been properly learned. For the reader's 

convenience the algorithms are given, with permission, in a tutorial in the Section Transreal 

Arithmetic. 

An important property of transreal arithmetic is that it is total, which means that every 

operation of the arithmetic can be applied to any numbers with the result being a number. By 

contrast the Arithmetica Universalis and real arithmetic are partial because division by zero is 

not defined. Newton defined his laws of motion verbally. When his words are read as relating 

to the Arithmetica Universalis or to real arithmetic, the arithmetical versions of the laws fail on 

division by zero. Consequently Newtonian Physics fails at singularities. By contrast when the 

verbal laws are read as relating to transreal arithmetic, the laws succeed on division by zero 

because transreal arithmetic is total. When we examine the laws, in detail, we find that, for 

Newtonian particles of a given mass, the transreal laws provide a coherent account of force and 

acceleration so we say that Transreal Newtonian Physics operates at singularities. However, the 

transreal laws give a more complicated account of mass at a singularity: the mass is both a given, 

finite number and nullity.  In the Section Discussion we resolve this dialethia, or true 

contradiction, by noting that the mass is a hidden variable in the singularity but is observable, 

by its gravitational effects, outside the singularity. 

The plan of the remainder of the paper is to summarise the salient features of transreal 

arithmetic in the Section Transreal Arithmetic. In the Section Arithmetica Universalis we show, 

very briefly, how the Arithmetica Universalis overlaps with, but is different from, both real and 

transreal arithmetic. In the Section Laws of Motion we deal with Newton's laws in two steps. 

Firstly we define how each of Newton's three laws of motion is to be read in transreal arithmetic. 

Secondly we perform computations on the second law to show that the behaviour of Newtonian 

particles is conceptually coherent. We then generalise this transarithmetical reading to versions 

of the laws stated in terms of the transdifferential. In the Section Discussion we briefly consider 
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how the new reading of Newton's laws might be applied at mathematical singularities and how 

the totality of the resulting mathematical analyses might be exploited in computer programs and 

novel computer hardware. In the Section Conclusion we conclude with a statement of the main, 

original contributions of the paper. 

 

2. Transreal Arithmetic and Transreal Calculus  

2.1 Relationship to Physics 

 

Transreal arithmetic implies a topology (REIS and ANDERSON, 2015),  Figure 1, that 

gives a definite, numerical value to the result of dividing any real number by zero. Infinity, ∞, 

is the unique number that results when a positive number is divided by zero; negative infinity, 

−∞, is the unique number that results when a negative number is divided by zero; nullity, Φ, is 

the unique number that results when zero is divided by zero. Nullity is not ordered, all other 

transreal numbers are ordered. Infinity is the largest number and negative infinity is the smallest 

number. Any particular real number is finite; ∞ and −∞ are infinite; Φ is non-finite. The infinite 

numbers are also non-finite. The real numbers, ℝ, together with the infinite numbers, {−∞, ∞}, 

make up the extended-real numbers, ℝ𝐸 ; the real numbers, together with the non-finite 

numbers, {−∞, ∞, Φ}, make up the transreal numbers, ℝ𝑇. Transcomplex numbers, ℂ𝑇, are 

also available in (ANDERSON, 2011) and have been simplified in a construction from the set 

of complex numbers (REIS and ANDERSON, 2014b). 

 

Figure 1. Transreal line 

 

Anderson (2008) argues that infinite forces can influence the real numbered universe 

because negative infinity is less than any real number and positive infinity is greater than any 

real number whence there is a number intermediate between any real number and an infinity so 

that continuous, i.e. classical, motion can occur. But nullity is an unordered number, thus, there 
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is no number intermediate between nullity and any other transreal number so no continuous, 

and no classical, motion can occur in response to a nullity force. The axiom that nullity forces 

have no influence on the extended-real universe is a hypothesis that links transreal arithmetic to 

Physics. We adopt this axiom here. 

This axiom gains plausibility when we recognise that the point at nullity is topologically 

isolated from the extended-real numbers (REIS and ANDERSON, 2015) so that there is no 

component of a nullity force that lies inside the extended-real space. Therefore motions within 

an extended-real space are not perturbed by a nullity force. 

In (REIS and ANDERSON, 2015) the interpretation that nullity has different topological 

properties from infinity is formalised. A further topology is imposed on the transreal numbers 

which allows infinite limits to exist in exactly the same way as in measure theory and integration. 

A very important consequence of this is that all of the results of real calculus extend to transreal 

calculus. In particular all of those results of mathematical physics that rely on the real derivative 

and real integral apply, without change, to the transreal numbers. The move to transreal calculus 

does, however, bring about an important change. In real calculus the infinity symbols, −∞, ∞, 

refer to indefinite, real variables that grow without bound. In transreal calculus the infinity 

symbols, −∞, ∞, refer to definite, transreal numbers that have a fixed value which can be 

computed using transreal arithmetic. Consequently transreal functions can be evaluated both as 

numerical values of the function and as limits of the function, where the limits exist. One may, 

therefore, obtain both the limit asymptotically close to a singularity and the function value 

exactly at the singularity. Hence one may test a function to determine whether or not it is 

continuous at the singularity. Thus armed, we have the mathematical tools needed to extend 

Newtonian physics so that it operates at singularities. We then use the Newtonian results as a 

basis for a bold conjecture that the event horizon of a black hole is not stable but roils. 

Newton's works are open to interpretation but it is common practice to read Newton's 

Principia (NEWTON, 1760), translated in (COHEN and WHITMAN, 1999), as describing 

operations on point particles which have a fixed, finite, positive mass, 𝑚, such that 0 < 𝑚 <

∞. We adopt this conventional reading here. 

 

2.2 Tutorial on Transreal Arithmetic 
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The reader might find it helpful to peruse this brief tutorial on transreal arithmetic which 

is reproduced and amended, with permission, from a conference paper (ANDERSON, 2011). 

The consistency of the set of transreal numbers is ensured by (ANDERSON et al, 2007) and 

their constructions from the real and complex numbers in (REIS and ANDERSON, 2014b).  

Transreal numbers can be expressed as transreal fractions, 𝑛/𝑑, of a real numerator, 𝑛, 

and a real denominator, 𝑑. Transreal fractions with a non-finite numerator or denominator 

simplify to this form. An improper, transreal fraction can be written with a negative 

denominator but it must be converted to a proper, transreal fraction, by carrying the sign up to 

the numerator, before applying any transreal, arithmetical operator. This can be done by 

multiplying both the numerator and denominator by minus one; it can be done by negating both 

the numerator and the denominator, using subtraction; and it can be done; lexically, by moving 

the minus sign from the denominator to the numerator. With −𝑑 <  0 we have: 

 

𝑛

−𝑑
=

−1 × 𝑛

−1 × (−𝑑) 
=

−𝑛

−(−𝑑)
=

−𝑛

𝑑
 

 

Transreal infinity, ∞, is equal to any positive number divided by zero. Transreal minus-

infinity, −∞, is equal to any negative number divided by zero. Zero, 0, is equal to zero divided 

by any positive or negative number. Nullity, Φ, is equal to zero divided by zero. That is, with 

𝑘 >  0 we have: 

 

∞ =
1

0
=

𝑘

0
                − ∞ =

−1

0
=

−𝑘

0
                0 =

0

1
=

0

𝑘
=

0

−𝑘
                Φ =

0

0
   

 

The algorithms of real multiplication and division apply universally to proper, transreal 

fractions. That is, they apply without side conditions. In particular division by zero is allowed. 

 

 
𝑎

𝑏
×

𝑐

𝑑
 =

𝑎 ×  𝑐

𝑏 ×  𝑑
 (2. 1) 

   

 𝑎

𝑏
÷

𝑐

𝑑
 =

𝑎

𝑏
×

𝑑

𝑐
 (2. 2) 
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Addition is more difficult than multiplication or division because it breaks into two cases: the 

addition of two signed infinities and the general case. Two infinities, in least terms, 1/0  or 

−1/0, are added using the  algorithm of real arithmetic for adding fractions with a common 

denominator: 

 

 ∞ + ∞ =
1

0
+

1

0
 =

1 + 1

0
=

2

0
=

1

0
= ∞ (2. 3) 

   

 
∞ + (−∞) =

−1

0
+

1

0
 =

−1 + 1

0
=

−1

0
= Φ (2. 4) 

   

 
(−∞) + ∞ =

−1

0
+

1

0
 =

−1 + 1

0
=

0

0
= Φ (2. 5) 

   

 
(−∞) + (−∞) =

−1

0
+

−1

0
 =

−1 + (−1)

0
=

−2

0
=

−1

0
= −∞ (2. 6) 

 

Addition of all other combinations of numbers uses the algorithm of real arithmetic for adding 

fractions without a common denominator: 

 

 
𝑎

𝑏
+

𝑐

𝑑
=

𝑎 × 𝑑 + 𝑐 × 𝑏

𝑏 × 𝑑
  (2. 7) 

 

Where both arguments (𝑎/𝑏) and (𝑐/𝑑) are finite, and 𝑏 = 𝑑, the real algorithm for adding 

fractions with a common denominator may be used as a shorthand. The algorithm of real 

subtraction applies universally: 

 

 
𝑎

𝑏
−

𝑐

𝑑
=

𝑎

𝑏
+

−𝑐

𝑑
  (2. 8) 

 

Transreal addition and multiplication are associative: 

 

 (𝑎 +  𝑏)  +  𝑐 =  𝑎 +  (𝑏 +  𝑐) 
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 (𝑎 ×  𝑏) ×  𝑐 =  𝑎 ×  (𝑏 ×  𝑐) 

 

Transreal addition and multiplication are commutative: 

 

𝑎 +  𝑏 =  𝑏 +  𝑎 

 

𝑎 ×  𝑏 =  𝑏 ×  𝑎 

 

Transreal arithmetic is partially distributive: 

 

𝑎 × (𝑏 +  𝑐) =  𝑎 ×  𝑏 +  𝑎 ×  𝑐 

 

That is, the above equality holds, firstly, when 𝑎 ≠  ±∞; secondly when 𝑎 =  ±∞ and 𝑏 +

 𝑐 =  0 or 𝑏 +  𝑐 = Φ or b, c have the same sign. Two numbers have the same sign when 

they are both positive or both negative or both zero or both nullity. 

Despite the fact that transreal arithmetic has a partial distribution, it is still a total 

arithmetic, because both 𝑎 ×  (𝑏 +  𝑐) and 𝑎 ×  𝑏 +  𝑎 ×  𝑐 can be computed for any 𝑎, 𝑏, 𝑐. 

 

2.3 Transreal Calculus 

 

The calculus is one of the most important mathematical tools in today’s world. Having its 

origins hundreds, perhaps thousands, of years ago. Without it, most current technological 

innovations would not exist. Calculus emerged and was developed by trying to understand 

nature. Primitive cultures conceived deities to control natural phenomena. Today we describe 

such phenomena with equations and computational models. We are like our ancestors; the 

difference lies only in our language and tools. We continue seeking for and giving explanations 

to the natural phenomena that surround us. Scientific research, mathematical research, 

philosophical thought, art and religious practice are faces of the same die. Namely, the seeking 

of knowledge. Transreal calculus is intended to extend the ordinary calculus to singularities. It 

is another lubricant for the human mind in its attempts to expand the horizons of mathematics 

and our understanding of the world. Transreal calculus allows the application of derivatives and 

integrals involving exact division by zero. The idea of dividing by zero, with transreals, 
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originated in Computer Science, but these numbers are proving useful and their fields of 

application are expanding. 

In (REIS and ANDERSON, 2015) the derivative and the integral are defined in transreal 

space. The derivative and integral are defined as limits and limits are defined in topological 

spaces. So the first step was to establish a topology in ℝ𝑇. In simple words, a topology is nothing 

more than a way to say when a point lies in the neighborhood of another. A topology for 

extended-reals is already known so all that had to be done was incorporate nullity into this 

topology. The topology of extended-reals is contingent on the order relation. As nullity is 

unordered, nullity is left as an isolated point. That is, there is a neighborhood of nullity that 

contains only itself. In this way: 

  

A set is open (a neighborhood of its points) on ℝ𝑇 if and only if it is composed of arbitrarily many unions of 

finitely many intersections of the following four kinds of interval: (𝑎, 𝑏), [−∞, 𝑏), (𝑎, ∞], {𝛷} where 𝑎, 𝑏 ∈

ℝ. 

  

The details of this topology are given in the text cited above. 

The second step followed directly by defining limit and continuity as usual in topological 

spaces. An important result from this is that transreal limit agrees with the real limit. That is, 

wherever real numbers occur in real limits, they occur identically in transreal limits and wherever 

infinities occur in real limits, they occur identically in transreal limits but as definite numbers, 

not only as symbols of divergence. 

The third step was to define the derivative on ℝ𝑇. The way chosen was the intuitive way 

of defining the derivative as the slope of the tangent line. So the derivative at a real number is 

the usual derivative at that number. And if the limit of slopes of the tangent lines at 𝑥, when 𝑥 

tends to ∞ (or −∞), is 𝐿 ∈ ℝ𝑇 then the slope of the tangent line at ∞ (or −∞) is 𝐿. 

Furthermore, it is nonsense to speak of a limit at an isolated point. Rather than accept the 

indeterminacy of the derivative at the isolated point, it is defined as Φ. Thus: 

 

Let 𝑓 be a function on ℝ𝑇. If 𝑥 ∈ ℝ then 𝑓′
ℝ𝑇(𝑥) = 𝑓′(𝑥) provided that this derivative exists. Further, 

𝑓′
ℝ𝑇(−∞) = lim

𝑥→−∞

𝑓′(𝑥) and 𝑓′
ℝ𝑇(∞) = lim

𝑥→∞

𝑓′(𝑥) provided that these limits exist, and 𝑓′
ℝ𝑇(Φ) =

Φ.  
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This implies that the exponential is identically its own derivative with 𝑒′(𝑥) = 𝑒(𝑥) so that the 

usual properties of this important function hold when extended to ℝ𝑇. The derivative of other 

important functions can be seen in a forthcoming paper1. Another observation is that the 

definition may not show it explicitly, but the derivative at −∞ or ∞ also is, like the usual one, a 

rate of change of the function. It is shown that 𝑓′
ℝ𝑇(−∞) = lim

𝑥→−∞
𝑦→−∞

𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
 and 𝑓′

ℝ𝑇(∞) =

lim
𝑥→∞
𝑦→∞

𝑓(𝑦)−𝑓(𝑥)

𝑦−𝑥
 where these limits are defined in a suitable sense. 

The fourth step was to define the integral on ℝ𝑇. The integral was defined in the usual 

way as infimum and supremum of integrals of step functions. The difference in the transreal 

case lies in the definitions of intervals, length of intervals and partitions of intervals. Let 𝑎, 𝑏 ∈

ℝ𝑇. It was defined that (𝑎, 𝑏) = {𝑥 ∈ ℝ𝑇;  𝑎 < 𝑥 < 𝑏}, (𝑎, 𝑏] = (𝑎, 𝑏) ∪ {𝑏}, [𝑎, 𝑏) = {𝑎} ∪

(𝑎, 𝑏) and [𝑎, 𝑏] = {𝑎} ∪ (𝑎, 𝑏) ∪ {𝑏}. Notice that, in the usual way, [𝑎, 𝑏] would be defined 

as {𝑥 ∈ ℝ𝑇;   𝑎 ≤  𝑥 ≤  𝑏}, but then one would have [𝑎, Φ] = ∅. However, by the definition 

given, [𝑎, Φ] = {𝑎, Φ}. Concerning the length, if 𝐼 is one of the intervals above then the length 

of I is: |𝐼| = 0 if 𝐼 = ∅, |𝐼| = 𝑘 − 𝑘 if 𝐼 = {𝑘} for some 𝑘 ∈ ℝ𝑇 and |𝐼| = b − a otherwise. 

Notice that, in the usual way, simply, |𝐼| = 𝑏 − 𝑎. But on ℝ𝑇, |𝐼| would then not be well 

defined. Because, for 𝑎 ∈ ℝ,  |[𝑎, Φ)| = Φ − 𝑎 = Φ and |[𝑎, 𝑎)| = 𝑎 − 𝑎 = 0, but [𝑎, Φ) =

{𝑎} = [𝑎, 𝑎). Consequently there would be the absurdity Φ =  |[𝑎, Φ)| = |[𝑎, 𝑎)| = 0. 

Concerning partitions, let [𝑎, 𝑏] be an interval. A set 𝑃 is a partition of [𝑎, 𝑏] if there are 𝑛 ∈ ℕ, 

𝑥0, … , 𝑥𝑛 ∈ [𝑎, 𝑏] such that 𝑃 = (𝑥0, … , 𝑥𝑛) where 𝑥0 = 𝑎, 𝑥𝑛 = 𝑏 and, furthermore, if 𝑛 =

2, 𝑥0 ≤  𝑥1 and if 𝑛 > 2, 𝑥0 <  𝑥1 < ⋯  <  𝑥𝑛−1 <  𝑥𝑛. Notice that one could require, simply, 

𝑎 = 𝑥0 ≤  𝑥1 ≤  ⋯ ≤   𝑥𝑛−1 ≤   𝑥𝑛 = 𝑏 but then the interval [𝑎, Φ], for 𝑎 ∈ ℝ would not 

have any partitions because 𝑎 ≤ Φ does not hold. After that: 

 

Let 𝑎, 𝑏 ∈ ℝ𝑇 and 𝜑 = ∑ 𝑐𝑗X𝐼𝑗

𝑛
𝑗=1  be a step function on [a,b] (X denoted the characteristic function). The 

integral in ℝ𝑇 of 𝜑 on [𝑎, 𝑏] was defined as 

                                                           
1REIS, T. S. dos; ANDERSON, J. A. D. W. Transreal Limits and Elementary Functions. Transactions on Engineering 
Technologies - World Congress on Engineering and Computer Science 2014, Springer. To appear. 
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∫ 𝜑(𝑥)
𝑏

𝑎ℝ𝑇

= ∑ 𝑐𝑗|𝐼𝑗|

𝑛

𝑗=1
𝑗; 𝑐𝑗≠0

. 

Now let 𝑓: [𝑎, 𝑏] → ℝ𝑇  be a function. The integral in ℝ𝑇 of 𝑓 on [𝑎, 𝑏] was defined as 

∫ 𝑓(𝑥)
𝑏

𝑎ℝ𝑇

= inf { ∫ 𝜑(𝑥)
𝑏

𝑎ℝ𝑇

𝑑𝑥; 𝜑 ∈ S([𝑎, 𝑏]) 𝑎𝑛𝑑 𝜑 ≮ 𝑓 } 

provided that 

inf { ∫ 𝜑(𝑥)
𝑏

𝑎

;
ℝ𝑇

𝜑 ∈ S([𝑎, 𝑏]) 𝑎𝑛𝑑 𝜑 ≮ 𝑓 } = sup { ∫ 𝜎(𝑥)
𝑏

𝑎ℝ𝑇

; 𝜎 ∈ S([𝑎, 𝑏]) 𝑎𝑛𝑑 𝑓 ≮ 𝜎 } 

(S([𝑎, 𝑏]) denoted the set of step functions on [𝑎, 𝑏]). 

 

The transreal integral agrees with real integral. That is, if 𝑎, 𝑏 ∈ ℝ and 𝑓: [𝑎, 𝑏] → ℝ is a 

bounded function then ∫ 𝑓(𝑥) 
𝑏

𝑎
=

ℝ𝑇 ∫ 𝑓(𝑥)
𝑏

𝑎
. Furthermore, if the improper integral is 

absolutely convergent then ∫ 𝑓(𝑥) 
∞

−∞
=

ℝ𝑇 ∫ 𝑓(𝑥) 
∞

−∞
. 

With the extension of the calculus to the transreal domain the physical applications which 

use derivatives and integrals can be considered at singularities. 

 

3. Arithmetica Universalis 

3.1 Individibles are independent from the Arithmetica Universalis  

 

As a young man, Newton, writing in English, makes notes on the indivisibles. See 

(WHITESIDE, 1974, v. 1), from p. 89. The indivisibles were supplanted, long after Newton's 

death, by the modern development of infinitesimal numbers. Newton writes that surfaces are 

made up of infinitely many lines so that any surface is infinitely larger than a line but that one 

surface can be a different size from another so that infinity has a dual nature: infinities may be 

different sizes but they are all the same size when compared to a finite number. We shall not 

detain the reader with a discussion of the merits of this view but press on to consider the 

arithmetical treatment that Newton pursues on page 89, ibid: 

Thus 
2

0
 is double to 

1

0
 & 

0

1
 is double to 

0

2
, for multiply y𝑒 2 first & divide y𝑒 2𝑑𝑠 

by 0, & there results 
2

1
:

1

1
 & 

1

1
:

1

2
. yet if 

2

0
 & 

1

0
 have respect to 1 they beare y𝑒 
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same relation to it[,] y𝑡 is 1:
2

0
: : 1:

1

0
. & ought therefore to bee considered 

equall in respect of a unite. 
 

That is Newton multiplies the first two terms,  2/0 and  1/0, by zero, 0/1, and cancels 

the zeros, 0, to obtain 
2

0
×

0

1
 =

2

1
 and 

1

0
×

0

1
 =

1

1
 . He then divides the remaining two terms 

0

1
 

and 
0

2
 by zero, 

0

1
, and cancels zeros, 0, to obtain 

0

1
÷

0

1
 =

0

1
×

1

0
 =

1

1
 and 

0

2
÷

0

1
 =

0

2
×

1

0
 =

1

2
. He 

then states, without proof, that 1:
2

0
: : 1:

1

0
. 

In particular, Newton holds that 
0

0
 =  1 and 

0

𝑎
=

0

𝑏
 ⟺  𝑎 =  𝑏. This is inconsistent with 

both real and transreal arithmetic but is coherent if we regard 0 as a fixed, infinitesimal number 

with a multiplicative inverse. This theme, of cancelling infinitesimals or derivatives, recurs 

throughout Newton's work but is absent from his presentation of the Arithmetica Universalis. 

We conclude that Newton could obtain the limit of some functions whose denominator 

asymptotes to zero, either by reasoning about indivisibles or using his fluxions, but could not 

divide by an exact zero. The same holds, mutatis mutandis, for real arithmetic and modern calculus. 

 

3.2 Arithmetica Universalis Versus Real and Transreal Arithmetic 

 

Newton's lecture notes on arithmetical algebra survive. See (WHITESIDE, 1974, v. 5) 

especially pages 61-107. These methods later became known as the Arithmetica Universalis. On 

a cursory reading, Newton's methods might appear, to the modern reader, to be just algorithms 

for implementing real arithmetic but this is not so - there are two differences. 

The first difference is Newton's definition of equality. "Equations - the collection together 

of quantities which are equal to one another or effectively equal to nothing... 𝑥 = 𝑝. OR 𝑥 −

𝑝 = 0." (WHITESIDE, 1974, v. 5, p. 111).  

We read this as saying that 𝑥 = 𝑝 is a synonym for 𝑥 − 𝑝 = 0, in other words,  𝑎 = 𝑏 if 

and only if 𝑎 − 𝑏 = 0. Our reading is more limiting than the modern definition of mathematical 

equality which allows equivalent mathematical objects to be held equal, regardless of whether 

or not they are numbers subject to an additive identity. Newton's definition of equality is too 

tight, it blocks some developments of real arithmetic that the modern definition of equality 

allows; in particular it blocks transreal arithmetic, which is a superset of real arithmetic. Transreal 

arithmetic holds that ∞ = ∞ and ∞ − ∞ = Φ ≠  0. In other words, infinity is equal to itself 
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but does not have an additive inverse - contrary to our reading of Newton's definition of 

equality. 

The second difference is that the operations of the Arithmetica Universalis are not defined 

tightly enough to exclude mathematical structures that lie outside real arithmetic. In particular 

all of the transreal operations of addition, subtraction, multiplication, and division appear in 

Newton's corresponding operations. The reader may confirm this by comparing the tutorial in 

the Section Tutorial on Transreal Arithmetic and in (ANDERSON, 2011) with the operations 

in  (WHITESIDE, 1974, v. 5), especially pages 61-107. This comparison is made, briefly, in the 

following subsection. 

In short, Newton used an early form of arithmetic which, with suitable modifications, can 

be formalised, inter alia, as real arithmetic or as transreal arithmetic. 

 

3.3 Similarities Between Transreal Arithmetic and the Arithmetica 

Universalis 

 

In this subsection all page numbers refer to the translation of Newton in (WHITESIDE, 

1974, v. 5); all equation numbers refer to our equations in Section Tutorial on Transreal 

Arithmetic. 

For the most part Newton did not impose side conditions on his definitions; specifically 

he did not forbid division by zero in the Arithmetica Universalis so when we read his definitions 

literally they admit transreal arithmetic. 

Page 61-62: 

A quantity set below a quantity with a short intervening rule denotes their 
quotient, that is, the quantity which arises from the division of the upper 

quantity by the lower one. ... 
𝑎

𝑏
 denotes that which arises on dividing 𝑎 by 𝑏 - 

if, say, 𝑎 be 15 and 𝑏 be 3, then it denotes 5. ... Quantities of this sort, 
however, are called fractions, the upper part the numerator and the lower one 
the denominator. 
 

This establishes a commonality between this one of Newton's notations and ours (Newton used 

several notations for the arithmetical operations, only some of which have survived into modern 

use). 

Page 75: "Fractions are multiplied by 'drawing' numerators into numerators and 

denominators into denominators. Thus ... 𝑎/𝑏 times 𝑐/𝑑 makes 𝑎𝑐/𝑏𝑑 ..." This is given, in our 

tutorial, as equation (2.1). Note that Newton does not specify any side conditions on 
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multiplication so a literal reading of his rule admits zero numerators and zero denominators; 

hence, on a literal reading, Newton's multiplication applies to all transreal numbers. 

Page 81: 

When, indeed, those quantities are fractional, multiply the numerator of the 
quantity to be divided into the denominator of the divisor, and its 
denominator into the numerator: the former product will then be the 

numerator of the quotient, the latter one its denominator. Thus to divide a/b 

by c/d, there is written ad/bc, where, of course, a is multiplied by d and b 

by c. 
 

Our equation (2.2) gives the same result: 

 

𝑎

𝑏
÷

𝑐

𝑑
 =

𝑎

𝑏
×

𝑑

𝑐
=

𝑎 × 𝑑

𝑏 × 𝑐
 

 

Thus a literal reading of Newton admits transreal division. 

Page 67: "Positive fractions whose denominator is the same are united by adding the 

numerators. Thus 
1

5
+

2

5
 make 

3

5
; and 2𝑎𝑥/𝑏 +  3𝑎𝑥/𝑏 make 5𝑎𝑥/𝑏 ... Negative quantities are 

added in the same way as positive ones." This admits the transreal addition of infinities, 

equations (2.3) to (2.6). However, it would give a different result for adding a signed infinity to 

nullity. A literal reading of Newton would admit, for example, Φ + ∞ =  0/0 +  1/0 =

 (0 +  1)/0 =  1/0 = ∞ where transreal arithmetic has Φ + ∞ =  0/0 +  1/0 =  (0 ×

 0 +  1 ×  0)/(0 ×  0)  =  0/0 = Φ. 

Page 107: 

This reduction is, however, of especial use in the addition and subtraction of 
fractions; for, should they have differing denominators, they must be reduced 

to the same one before they can be united. Thus a/b +  c/d comes by 

reduction to be ad/bd +  bc/bd, that is, (ad +  bc)/bd. 
 

This is given by our equation (2.7) so a literal reading of Newton admits transreal addition of 

fractions without a common denominator. 

Page 67: "Negative quantities are added in the same way as positive ones. ... 11𝑎𝑥/𝑏 and 

−4𝑎𝑥/𝑏 make 7𝑎𝑥/𝑏 ..." This admits transreal subtraction, equation (2.8). In particular, in our 

notation, 11𝑎𝑥/𝑏 −  4𝑎𝑥/𝑏 =  11𝑎𝑥/𝑏 + (−4𝑎𝑥)/𝑏 has its right hand side rendered by 

Newton's: "11𝑎𝑥/𝑏 and −4𝑎𝑥/𝑏" which means 11𝑎𝑥/𝑏 +  (−4𝑎𝑥)/𝑏. All computation 

paths producing the same result 7𝑎𝑥/𝑏. 
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Page 71: Our transreal subtraction is also admitted by Newton's "In algebraic terms 

subtraction is done by connecting quantities with all signs changed in the subtrahend and, 

moreover, uniting what can be united, exactly as happened in addition." Thus 11𝑎𝑥/𝑏 −

 (+4𝑎𝑥)/𝑏 has subtraction '−' rendered as addition '+' with the sign of the subtrahend 

(+4𝑎𝑥)/𝑏 changed to (−4𝑎𝑥)/𝑏 giving  11𝑎𝑥/𝑏 −  4𝑎𝑥/𝑏 =  11𝑎𝑥/𝑏 +  (−4𝑎𝑥)/𝑏 

exactly as in our equation (2.8). 

 Taking all of this together, a literal reading of Newton admits the whole of transreal 

arithmetic when we take care to add two infinities using Newton's algorithm for adding fractions 

with a common denominator and to add all other combinations of numbers using Newton's 

algorithm for adding fractions with different denominators. 

 

4. Laws of Motion 

4.1 Arithmetical Laws of Motion  

 

We are now ready to cast Newton's laws of motion into transreal arithmetic. We work 

with a modern translation of Newton in (COHEN and WHITMAN, 1999, p. 416-7) and tackle 

the laws in order of increasing difficulty: Law 1, Law 3, Law 2. 

Law 1: "Every body perseveres in its state of being at rest or of moving uniformly straight 

forward except in so far as it is compelled to change its state by forces impressed." 

We read this as implying that a nett force must be non-zero and non-nullity to compel a 

change of state. In other words, a particle accelerates only in response to a positive or negative 

force. 

Law 3: "To any action there is always an opposite and equal reaction; in other words, the 

action of two bodies upon each other are always equal and always opposite in direction." 

We read this as implying that an active force, 𝐹, is opposed by a reactive force, −𝐹, where 

the negation is computed using transreal arithmetic. As Newton explains, the assignment of the 

terms 'action' and 'reaction' is arbitrary. 

Law 2: "A change in motion is proportional to the motive force impressed and takes place 

along the straight line in which that force is impressed." 

We read this, in the usual arithmetical notation, as 𝐹 = 𝑚𝑎, computed with transreal 

arithmetic. 
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This completes the transarithmetical reading of Newton's laws. By virtue of the totality of 

transreal arithmetic (ANDERSON et al, 2007), Transreal Newtonian Physics allows division by 

zero, which immediately generalises Laws 1 and 3. 

Let us examine the second law in more detail. Table 1 shows a round-trip computation 

of acceleration and mass using transreal arithmetic. We use this computation to establish 

commutativities. The first column of the table, headed 𝑚, shows the given mass of a Newtonian 

particle. This mass is a fixed, positive, real number, 𝑟1, such that 0 < 𝑟1 < ∞. The second 

column, headed 𝑎, shows the given, non-negative, transreal acceleration of the particle. Within 

the column, 𝑟2 is a fixed, positive, real number, such that 0 < 𝑟2 < ∞. The reader may easily 

extend the table to deal with negative accelerations. The third column, headed 𝐹, shows the 

computation of force as 𝐹 = 𝑚𝑎. The fourth column, headed 𝑎′, shows the acceleration 

computed as 𝑎′ = 𝐹/𝑚. The last column, headed 𝑚′, shows the mass, computed as 𝑚′ = 𝐹/𝑎. 

All computations are in transreal arithmetic. 

𝑚 𝑎 𝐹 𝑎′ 𝑚′ 

𝑟1 0 0 0 Φ 

𝑟1 𝑟2 𝑟1𝑟2 𝑟2 𝑟1 

𝑟1 ∞ ∞ ∞ Φ 

𝑟1 Φ Φ Φ Φ 

Table 1. Transrithmetical computation of Newton's second law 

 

Recall that transreal division is a proper superset of multiplication by the multiplicative 

inverse. In general, transreal division does not introduce any kind of inverse but, in restricted 

cases, it may do so. The arithmetical restrictions inherent in Newtonian particles ensure that 

acceleration is completely specified by division, which is shown by the second (𝑎) and fourth 

(𝑎′) columns having identical entries within the body of the table: (0,0), (𝑟2 , 𝑟2), (∞, ∞), 

(Φ, Φ). The mass is underspecified by division, as is shown by the first (𝑚) and last (𝑚′) 

columns having three different entries in the body of the table: three occurrences of (𝑟1, Φ). 

This is to be expected: for example, any positive, finite mass that undergoes zero acceleration 

gives rise to a zero force - but we cannot then deduce the mass from knowing only that the 

force and acceleration are both zero! The entries of nullity in the last column may be interpreted 
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as indicating that the computation path followed yields no information about the given (or 'true') 

value of the mass.  

On a classical understanding of the universe this is of no consequence to how particles 

move though it does, of course, block the computation of mass in some cases. In other words 

the transreal motions provide for determined motions, of particles with a given mass, but do 

not always allow the computation of the mass from the observed motions of these primary 

particles. We may anticipate that other observations would allow the computation of their mass, 

such as measurements of the motion of secondary particles engaged in gravitational attractions 

with the primary ones. For example, if a mass the size of the Earth were unmoving then we 

could not calculate its mass from knowing that its acceleration is zero and the force acting on it 

is zero but, were a pair of perfect twins to visit the mass at antipodal points, they could still 

jump up and down on it in synchrony! 

When using the second law, the computed values of force and acceleration are completely 

determined. We make this absolutely explicit by introducing two transarithmetical corollaries of 

Newton's verbal statement of his second law. The corollaries are computed in transreal 

arithmetic. 

Law 2a: 𝐹 = 𝑚𝑎 when 0 <  𝑚 < ∞ and 𝑎 is transreal. 

Law 2b: 𝑎 = 𝐹/𝑚 when 0 <  𝑚 < ∞ and 𝐹 is transreal. 

This leaves the computation of the sometimes underspecified mass. We define: 

Law 2c: 𝑚 = 𝐹/𝑎 when 𝑎, 𝐹 are transreal. When 𝑚 ∈ ℝ the computed mass, 𝑚, is 

determined but when the computed mass 𝑚 = Φ the true, finite mass is hidden. 

Thus Law 2c computes either the true mass or else flags that the mass is hidden. We 

cannot ask much more of the arithmetic, that it computes the modelled values for particles in 

motion or else flags hidden variables in our model of physics; but we might do rather more by 

modelling a wider range of  physical interactions using transnumbers as a new mathematical 

basis for our models. That is we might do more by developing a Transreal Newtonian Physics. 

We take some preliminary steps toward this in the Section Discussion. 

 

 

4.2 Differential Laws of Motion  
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Laws 1 and 3 are already completely generalised by their transreal reading developed in 

the subsection immediately above. It remains only to re-write Laws 2a, 2b, 2c in differential 

form. We use Leibnizian notation because this is more widely used in Mathematical Physics. It 

is to be understood that derivatives are computed using the transreal definitions given in (REIS 

and ANDERSON, 2015). As usual 𝑣 is the velocity and 𝑡 is the time. 

Law 2a: 𝐹 = 𝑚
d𝑣

d𝑡
  when 0 <  𝑚 < ∞ and  

d𝑣

d𝑡
 is transreal. 

Law 2b: 
d𝑣

d𝑡
= 𝐹/𝑚 when 0 <  𝑚 < ∞ and 𝐹 is transreal. 

Law 2c: 𝑚 = 𝐹 ÷  
d𝑣

d𝑡
 when 

d𝑣

d𝑡
 and 𝐹 are transreal. When 𝑚 ∈ ℝ the computed mass, 𝑚, 

is determined but when the computed mass 𝑚 = Φ the true, finite mass is hidden. 

The reader is now free to generalise differential equations wherever they occur in 

Mathematical Physics or more widely. 

 

5. Discussion 

 

In this section we discuss how transmathematics may be used to model physical situations. 

 

5.1 Seesaw  

 

In this subsection we consider a very simple physical experiment and analyse it in both 

conventional and unconventional ways. The point being to illustrate the trials and reversals that 

arise when exploring a problem with transmathematics for the first time. The story we are about 

to recount may help readers in their own explorations of more important problems. 

Suppose we have a seesaw, that is a bar balanced on a fulcrum. We place a weight of mass 

𝑚1 at a distance 𝑑1 on one side of the fulcrum and place a weight of mass 𝑚2 at a distance 𝑑2 

on the other side of the fulcrum. When is the seesaw balanced? The usual answer is when 

𝑚1𝑑1  =  𝑚2𝑑2 and we call each 𝑚𝑖𝑑𝑖 a 'moment.' But we may hypothesis another solution: 

the seesaw is balanced when 𝑚1/𝑑2  =  𝑚2/𝑑1. This gives the usual answer for 𝑚𝑖, 𝑑𝑖 finite 

and non-zero. Suppose we take 𝑚1  =  1 and 𝑚2  =  2 with 𝑑1  =  𝑑2  =  0 then 𝑚1/𝑑2  =

 1/0 = ∞ =  2/0 =  𝑚2/𝑑1 and the seesaw is balanced. Suppose we take 𝑚1 = 𝑚2 = 𝑑1 =

 𝑑2 =  0 then 𝑚1/𝑑2 = 0/0 = Φ = 0/0 = 𝑚2/𝑑1 and the seesaw is balanced. All of these 
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non-finite results agree with experiment. Is there any empirical reason to prefer one formula 

over the other? 

Suppose we add a third weight of mass 𝑚3 at distance 𝑑3 ≠  𝑑2 on the same side of the 

fulcrum as 𝑚2. When is the seesaw balanced? The usual answer is when 𝑚1𝑑1  =  𝑚2𝑑2  +

 𝑚3𝑑3. We are at a loss to find any simple formula involving division so Occam's Razor drives 

us to accept the usual solution, which we now do. 

Suppose we have two infinite weights at the fulcrum. That is  𝑚1  =  𝑚2  = ∞ and 𝑑1  =

 𝑑2  =  0 then 𝑚1𝑑1  = ∞ ×  0 = Φ = ∞ ×  0 =  𝑚2𝑑2 and the seesaw is balanced. 

Is there any non-finite case that violates our expectations? Consider two nullity weights 

𝑚1, 𝑚2 = Φ and a finite weight 𝑚3 = 3 at distances 𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 3. Our usual 

expectation is that the seesaw is balanced when 𝑚1𝑑1  =  𝑚2𝑑2  +  𝑚3𝑑3 that is when Φ ×

 1 = Φ ×  2 +  3 × 3 which simplifies to Φ = Φ and we expect the seesaw to be balanced 

regardless of the position and mass of the weight 𝑚3. But this violates our expectations because 

the nullity masses impart a nullity force and the transreal reading of Law 1 tells us that an object 

accelerates only in response to a positive or negative force, not a zero or nullity force. Therefore, 

contrary to our expectations, the formula tells us that the seesaw is balanced when it has a single, 

off centre, force acting on it. 

In the absence of experiment, this violation of our expectations has an easy remedy. We 

sum only the positive moments. Alternatively we transform nullity moments into zero moments 

before summing moments. In either case we are modelling the physics of the seesaw not with a 

purely arithmetical formula but with a formula that has some conditionality to it. This additional 

complexity makes our solution total. We gain the ability to compute the moments on the seesaw 

even in the case of mathematical singularities involving non-finite numbers that have a zero 

denominator. 

The seesaw is a simple, but non-trivial, example of computing Newtonian solutions at 

mathematical singularities. It involves easily realisable situations which give rise to non-finite 

solutions in some models of the experiment, solutions which agree with experimental evidence! 

In the next subsection we use Transreal Newtonian Physics to make a prediction about 

black holes that is potentially capable of astronomical verification and verification in high-energy 

accelerators. 

 

5.2 Black Hole 
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In this subsection we make predictions about violent physical singularities that are subject 

to empirical confirmation or rejection. In doing this we draw on Transreal Newtonian Physics 

but treat is as an analogy to make predictions about physical behaviour exactly at a real singularity 

in a black hole - a situation that neither conventional mathematics nor physics can presently 

analyse. 

Suppose that two massive, Newtonian particles, with electrostatic charges of the same 

polarity, are drawn into the singularity inside a black hole. At the singularity the particles 

experience an infinite gravitational attraction and an infinite electrostatic repulsion. The nett 

force is ∞ − ∞ = Φ. By our transreal reading of Law 1, the particles are free to move but 

experience no force compelling them to move. Let us suppose, which modern Physics teaches, 

that it is in the nature of particles to undergo stochastic motion. Now the particles may move 

stochastically away from the singularity, as a pair of particles moving in opposite directions, as 

required by Law 3. This creates a convection current, as massive, charged particles fall into a 

singularity and escape it stochastically, only to fall back in again unless the stochastic motion 

carries them beyond the event horizon with an escape velocity away from the black hole! 

Of course we do not expect real black holes to operate according to any reading of 

Newtonian physics, even one extended with notions of an event horizon and the stochastic 

motion of particles, but we may generalise our argument. If, as we are taught by modern Physics, 

the universe escaped from a singularity at the big bang then there is some process for escaping 

singularities and we hypothesise that it is a process involving nullity force at the singularity and 

stochastic motion everywhere. At this level of analysis we are not concerned with the nature of 

the stuff that escapes the singularity; it may be space, time, energy, mass or anything at all. It is 

of no concern. We argue only that this process operates today in the singularities of a black hole 

and that this stuff, whatever it is, circulates in a convection current. Hence we predict that the 

event horizon of a black hole is not stable but rather roils in response to the shifting centre of 

mass brought about by the convection current. This prediction is potentially capable of 

astronomical verification; firstly by observing the x-ray emissions from gasses falling into a black 

hole which will be emitted at points that do not lie exactly on a radius about the black hole and 

with energies that are not monotonically related to the distance from the black hole. We also 

note that a roiling surface has a higher surface area than a smooth surface so a real black hole 

will experience more Hawking radiation than assumed in smooth models. If small black holes 



Synesis, v. 7, n. 2, p. 57-81, jul/dez. 2015, ISSN 1984-6754 
© Universidade Católica de Petrópolis, Petrópolis, Rio de Janeiro, Brasil 

 

 

 

 
 

77 

can be made in particle accelerators then this prediction might be tested by measuring the mass 

and lifetime of the microscopic black holes. 

We expect that professional physicists can make more and better predictions of the 

behaviour of physical systems at singularities. We simply offer transreal calculus and a 

transphysics as first steps toward generalising all of the mathematical tools that physicists use. 

 

5.3 Computers 

 

In this subsection we anticipate future developments in the design of digital computers 

and programming languages. Almost all general-purpose computers use the von Neumann 

architecture but this makes a physically impossible assumption. It assumes that data move in 

unit time, regardless of the distance over which they travel. Thus the von Neumann architecture 

assumes that data violate the light speed constraint that appears to hold in our universe. The 

von Neumann architecture handles this by stalling the processor until data are ready but there 

is another approach known to Computer Science. Dataflow machines assume that data travel at 

a finite speed. Such machines have very high performance in special computations but it is 

difficult to design a useful, general-purpose, dataflow machine. One stumbling block is that 

ordinary computer instructions have logical exceptions which are handled, in dataflow 

machines, by re-routing data in ever more complicated patterns. However, it is possible to 

design total instruction sets that have no logical exceptions, leading to much more effective 

dataflow machines. Such instruction sets may profitably use transreal arithmetic in their 

arithmetical operations. 

We may expect that total instruction sets will make it much easier for a compiler to 

compose subroutines automatically. Providing the parameters are of the correct type, functions 

can be composed arbitrarily. This should make it much easier to implement optimisation 

systems that have some component of stochastic or deterministic recombination of 

programmed components. It may also makes metaprogramming simpler so that computer 

systems can more easily generate efficient programs to deal with changed circumstances. 

Total instruction sets also have an important role to play in safety critical systems. In a 

suitable architecture, any syntactically correct program is semantically correct - in the sense that 

it will not crash on a logical error. Thus any program that compiles, is guaranteed to execute 

without such errors. This is valuable in itself and makes it easier to verify programs. 
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Such developments in hardware and software might be realised in the future and, if they 

are, we may expect that programs will execute more quickly if they implement total systems 

rather than the partial systems ordinarily programmed today. The current paper is a first step 

toward expressing physical problems in transmathematics so that a wide range of scientific and 

engineering problems can be programmed efficiently on such machines. This gives a pragmatic 

reason to want a transmathematics and transphysics. 

 

6. Conclusion 

 

We go back to the primary sources of Newton's papers and show that his mathematical 

methods extend to the transreal numbers so that Transreal Newtonian Physics operates at 

mathematical singularities. We demonstrate Transreal Newtonian Physics with a simple, but 

non-trivial, example of non-finite forces applied to a beam, balanced on a fulcrum. We then 

analyse the singularity in a black hole using Transreal Newtonian physics and find that massive 

charged particles circulate through the singularity and its neighbourhood in a convection 

current. Arguing by analogy, we predict that the event horizon of real black holes is not stable 

but roils in response to perturbations of the centre of mass, brought about by convection 

current at the physical singularity inside the black hole. This leads us to propose experiments, 

in both astronomy and high energy physics, that might confirm or rebut our predictions.  We 

expect that professional physicists can make more and better predictions than we can. We finish 

by noting some of the practical advantages that arise from total computation.  
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