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Abstract. This work investigates the acoustical intensity generated by the sound radiated from

rectangular plates in four cases with distinct combinations of classical boundary conditions.

The objective is to identify the regions of these plates that effectively contribute to the radiated

sound power into the far-field, especially when the driven frequency occurs below the critical

coincidence frequency. This identification is done by filtering the non-propagating waves, both

using the (analytical) supersonic intensity method and the (numerical) useful intensity model.

Brief theoretical formulations, both for the plates vibration and the resulting acoustical field,

are discussed. The closed form solution of the normal velocity field for the four cases is given.

Then, the supersonic intensity is estimated. In the numerical examples, the comparison of the

supersonic intensity, the useful intensity and the classical acoustic intensity is shown.
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1 INTRODUCTION

Rectangular plates are structural elements of great importance, being present in several

places and in many engineering applications, such as on mechanical and aeronautic ones. In

this way, the discussion and analysis of the sound radiation due to plates vibration has received

the special attention of researchers in the last decades [2, 4, 9, 13].

A relevant concept was introduced by [13], named by the author as supersonic intensity

(SI), to identify the regions on the source surface that radiates efficiently and contributes to

the sound power. The calculus of the SI is originally based on the spatial Fourier transform,

being formulated in the wavenumber space, where the sound field is processed. Its fundamen-

tal principle relies on the filtering of the non-propagating waves — the evanescent ones [14].

As a consequence, only the propagating components remains. Williams [14] also concerns in

distinguishing the SI from the classical acoustic intensity (AI), showing that in the near field

there is energy recirculation and the AI is not as reliable as the SI to identify the actual sound

sources. However, his work is focused in rectangular plates simply supported in the four edges.

He shows that it is possible to identify the corner, border and surface modes, in conformity with

the results found in the literature [10].

Grande et al. [4] examined the concept of supersonic intensity and reformulate it as a filter-

ing operation directly in the space domain. The method allows the identification of the efficient

radiation regions of a sound source and evaluates the actual contribution to the radiated sound

power. A numerical example of a plate clamped in all edges is presented as well as an experi-

mental study to illustrate the method and to examine its advantages and limitations. The method

has the convenience of not requiring to move to the wavenumber space, but it is still restricted

to separable geometries.

Corrêa and Tenenbaum [2] present an innovative technique for the computation of a numer-

ical equivalent to the SI, for sound sources with arbitrary geometry, which was named by the

authors as useful intensity (UI). As the SI, the technique filters the non-propagating components,

extracting the propagating ones. The method is entirely formulated in the vibrating surface. The

sound power is obtained through a matricial operator that is related to the normal velocity field,

by using the boundary element method (BEM). This operator is Hermitian, guaranteeing that its

eigenvalues are real and the associated eigenvectors form a basis for the velocity distribution.

The use of a stop criteria allows the removing of the non-propagating components. The great

advantage of the method is to be applied to non-separable geometries.

Although there is a substantial number of works in the literature dealing with rectangular

plates radiation [5, 8, 17], the analytical determination of the hot spots of such plates with other

boundary conditions was not examined yet. In this work it is computed the supersonic intensity

for rectangular plates with four distinct boundary conditions. Finally, the SI is compared with

the classical acoustic and useful intensities.

The four considered cases in this study are S-S-C-S, C-C-C-C, S-C-C-C, and S-S-C-F. The

letters indicate the boundary conditions at the edges x = 0, x = a, y = 0 and y = b, as seen in

Fig. 1 and refers to free (F), clamped (C) and simply supported (S), as usual.

2 MATHEMATICAL BACKGROUND

2.1 Equations of motion for a thin plate vibration

Let us consider a rectangular plate in plane xy, with length a, width b and thickness h.

The classical Kirchhoff theory for thin plates will be considered. In the frequency domain, the

differential equation that governs the transverse displacements w(x, y), independently of the
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Figure 1: Four combinations of classical boundary conditions to be considered

imposed boundary conditions, is

∇4w(x, y) + k4bw(x, y) = 0, with k4b =
ρshω

2

D
, (1)

where kb is the flexural wavenumber, ω is the circular frequency, and D is the flexural stiffness

of the plate, given by

D =
Eh3

12ρs(1− ν2)
, (2)

where E is the Young modulus, ρs is the plate density and ν is the Poisson coefficient.

The normal velocity distribution v̂(x, y), in the frequency domain, is

v̂(x, y) = iωwmn(x, y), (3)

where i is the imaginary unit, wmn(x, y) is the modal shape function associated with (m,n)
mode, m and n being the mode counters, and ωmn is the natural frequency for a given (m,n)
mode. The function wmn(x, y) can be written as a product of beam functions, in the form [7]

wmn(x, y) = ψm(x)φn(y), (4)

so that φm(x) and ψn(y) are chosen as fundamental modal shapes for beams with the same

boundary conditions of the corresponding plate. The functions

ψm(x) = C1 sin(β1x) + C2 cos(β1x) + C3 sinh(β2x) + C4 cosh(β2x); (5)

φn(y) = B1 sin(µ1y) +B2 cos(µ2y) +B3 sinh(µ2y) +B4 cosh(µ2y), (6)

with a convenient choice of constants Ci and Bi, i = 1, . . . , 4, that must satisfy the boundary

conditions listed in Table 1, and β1,2 and µ1,2 are, respectively, eigenvalues in the coordinates

directions x and y.

Table 1: Boundary conditions for a beam

Notation Type of support Boundary conditions

a) S Supported w =
∂2w

∂x2
= 0

b) C Clamped w=
∂w

∂x
= 0

c) F Free
∂2w

∂x2
=
∂3w

∂x3
= 0
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It is worth noting that a closed form of the normal mode wmn is obtained, for each case,

by using the symplectic dual method, shown in [15]. Those authors use the variable separa-

tion method to solve the Hamiltonian dual form of the eigenvalue problem in thin vibrating

plates (Eq. (1)).

For the other two opposite edges x = 0 e x = a, a characteristic equation and a set of

eigenfunctions ψm(x) can be obtained similarly.

The natural mode of vibration, given in Eq. (4) is obtained from the corresponding functions

ψm(x) and φn(y).

2.2 Analytical formulation of the supersonic acoustic intensity

The mathematical formulation of the radiation problem is widely discussed in [2]. However,

for the sake of completeness and better understanding, the mathematical development is very

briefly outlined here.

The supersonic acoustic intensity is a tool obtained using the inverse spatial Fourier trans-

form to eliminate non-propagating (subsonic) waves, leaving the far-field radiating (supersonic)

components.

The supersonic acoustic pressure, p̂(s), and the normal supersonic velocity, v̂(s), both in the

frequency domain, that are associated with the corresponding pressure p and normal velocity v

inside the radiation circle Cr, are written as

p̂(s)(x, y, 0, ω) =
1

4π2

∫ ∫

Cr

p̃(kx, ky, 0, ω)e
i(kxx+kyy) dkx dky, (7)

v̂(s)(x, y, 0, ω) =
1

4π2

∫ ∫

Cr

ṽ(kx, ky, 0, ω)e
i(kxx+kyy) dkx dky, (8)

where p̃ and ṽ are, respectively, the pressure and normal component of velocity in the wavenum-

ber domain, kx and ky are the wavenumbers in the plane directions, ω is the angular frequency

and i is the imaginary unit, as usual [14].

The flow of acoustic energy that is radiated effectively into the far-field, i.e., the supersonic

(acoustic) intensity (SI), is then defined as

Î(s) =
1

2
ℜ[p̂(s)(x, y, 0, ω)v̂(s)(x, y, 0, ω)*], (9)

where the subscript “*” denotes the complex conjugate and ℜ stands for real part.

Note that the supersonic intensity is essentially a spatial low-pass filtered version of the

conventional active intensity, where the non-propagating waves are filtered out.

An important result shown by [13] is that the sound power, Π, calculated with the use of

acoustic intensity (AI) is the same as that calculated with the SI. In other words, if S is the

vibrating surface, then

Π =

∫

S

Î(x, y, 0, ω) dS =

∫

S

Î(s)(x, y, 0, ω) dS, (10)

3 NUMERICAL FORMULATION

It is well known that there is no closed form solution to compute the supersonic intensity

for vibrating sound sources with arbitrary geometries. The alternative, in these cases, is to dis-

cretize the geometry and use numerical methods to model the radiation problem. These methods
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must be capable to identify, through computational tools, the regions of the source surface that

effectively contributes to the radiated sound power. To obtain such numerical model, firstly the

normal velocity field obtained in a closed form as presented in Subsection 2.1. The acousti-

cal pressure field is then obtained with the boundary element method (BEM). In this work, the

useful intensity according to the definition given by [2] is also shown for each of the four cases.

3.1 Formulation of the boundary element method

The boundary element method is based on Green’s theorem to compute the fundamental

solution of the Helmholtz equation to obtain an integral contour of the domain, called Kirchhoff-

Helmholtz integral, given by

cp̂(X,ω) =

∫

Γ

(

iωρ0v̂(Xs, ω)G(Xs|X)− p̂(Xs, ω)
∂G(Xs|X)

∂ns

)

dΓ, (11)

where c is a coefficient dependent on the position of point X(x, y, z); Xs(x, y, 0) is a point on

the surface; Γ is the surface contour and G(Xs|X) is the free field Green function, which is

given by, see [12],

G(Xs|X) =
eik|Xs−X|

4π|Xs −X|
. (12)

A matrix relationship between pressure and normal velocity at the surface can then be ob-

tained as

p̂ = Rv̂ (13)

Knowing v̂ and p̂, then it can be obtained the normal component of the acoustic intensity

(AI), as

Î =
1

2
ℜ[p̂ v̂∗]. (14)

where R = H−1G is called surface operator. For details about H and G matrices, see [6].

3.2 Useful intensity

Xu and Huang [16] showed that the sound power can be expressed in terms of the normal

velocity distribution. Such relationship is given as

Π = v̂HQ̄v̂, (15)

where H indicates the conjugate transpose and Q̄ is a Hermitian operator, i.e., Q̄ = Q̄H , called

power operator by [2]. The characteristic of being Hermitian is a fundamental one, since it

guarantees that the eigenvalues are all real and that any base of the invariant sub-spaces form an

orthonormal set for the velocity distribution of the surface [3].

To formulate the model for the calculus of the sound power filtering the non radiating modes

it is convenient to decompose the power operator in the form

Q̄ = VDV−1, (16)
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where V is a matrix such that its columns are the eigenvalues of Q̄, V−1 is the inverse matrix of

V, and D is the diagonal matrix containing the eigenvalues of Q̄. Since the matrix V is unitary,

one can write Eq. (16) as

Q̄ = VDVH , (17)

and, then, the sound power can be computed as

Π = v̂HVDVH v̂ =

r
∑

i=1

λi〈v̂
H,Vi〉〈V

H
i , v̂〉 (18)

where r is the global number of eigenvalues λi of Q̄. Such eigenvalues are called eigenvalues

of velocity, in analogy to the denomination given by [1] to the singular values. The VH
i are the

lines of VH and Vi are the columns of V. In other words, the eigenvectors of Q̄, are called

own pattern of velocity, since they form a set of modes for the normal velocity distribution.

The series presented in Eq. (18) can be truncated for a limited number or radiation modes

that effectively contribute to the sound power radiated. In this way, the modes associated to

eigenvalues with negligible magnitude are discarded, obtaining an accurate approximation for

the sound power. This means that

Π =
r

∑

i=1

λi〈v̂
H, Vi〉〈V

H
i , v̂〉 ≈

rc
∑

i=1

λi〈v̂
H , Vi〉〈V

H
i , v̂〉, (19)

with rc < r, where rc is a sufficient quantity of retained modes.

Aiming at obtaining such a truncation procedure, the eigenvalues are organized — without

loss of generality — in a decreasing order of absolute values, that means, |λ1| > |λ2| > · · · >
|λr|.

To chose the best value rc < r of the series shown in Eq. (18), it is adopted a truncation

criteria based on the similarity of the matrices D e Q and on the definition of the convergent

series [11]. As a consequence, the following criteria is adopted

∣

∣

∣

∣

∣

t−
rc
∑

i=1

λi

t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Π−
rc
∑

i=1

λi〈v̂
H , Vi〉〈V

H
i , v̂〉

Π

∣

∣

∣

∣

∣

< δ (20)

where t is the trace of matrix Q̄ and δ is a tolerance value prescribed.

The determination of the useful intensity is done in three steps. In the first one, the useful

normal velocity v̂(u) is obtained. For that, the orthonormality of the eigenvectors is used. Then,

the useful velocity is written as a sum of the retained modes in Eq. (19), that means,

v̂(u) =

rc
∑

i=1

〈Vi
H , v̂〉Vi. (21)

In the second step, the useful pressure, p̂(u), is obtained from the insertion of v̂(u) in Eq. (13),

resulting in

p̂(u) = Rv̂(u). (22)
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Knowing the useful normal velocity and the useful acoustical pressure one can go to the last

step, the useful intensity computation, given by

Î(u) =
1

2
ℜ[p̂(u)v̂(u)∗]. (23)

4 NUMERICAL RESULTS

This section presents the results for the supersonic intensity (SI), as presented in Section 2.3,

and the useful intensity (UI), as presented in Section 3.2, for rectangular plates with the four

considered boundary conditions shown in Fig. 1. In the first subsection the results for a plate

with all edges clamped, Case 2, are compared with those obtained by [4]. In the second subsec-

tion the results obtained for the other three cases are presented. For the sake of comparison, the

classical acoustic and useful intensities (AI) are also computed and plotted for all cases.

4.1 Clamped plate

As aforementioned, in this section, the SI and the AI are compared to a steel rectangular plate

of dimensions 0.5 m × 0.7 m, and 0.001 m thick with four edges clamped. The plate was driven

in mode (4,10), as shown in Fig. 2, at the frequency of 950 Hz, below the coincidence frequency.

It is worth noting that, according with the thin plate theory that classifies the modes in a corner

or edge modes for vibrating plates driven at a frequency below the coincidence frequency [10],

there is radiation efficiency only along to the boundaries, due the energy cancelling effect.
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Figure 2: Boundary condition: Full clamped. (a) Normal velocity (m/s). (b) Acoustic intensity (W/m2). (c)

Supersonic intensity (W/m2). (d) Useful intensity (W/m2)

4.2 Other boundary conditions

This subsection presents the numerical results for the other three combinations of bound-

ary conditions considered in this work for an aluminum rectangular plate of dimensions 1 m
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× 1.2 m, and 0.002 m thick. In the sequel it is presented, for the other three boundary con-

ditions, the considered mode with its corresponding frequency. The modes were selected to

give a full panorama of corner and edge modes in according to the theory of radiation modes

of [10]. Table 2 presents the excited modes for each boundary condition and the corresponding

frequencies.

Table 2: Excited modes and corresponding frequencies for the considered boundary conditions

Boundary conditions Excited mode Frequency (Hz)

SSSC (5,9) 388

SCCC (5,7) 343

SSCF (5,8) 372

In what follows, it is presented the distribution of four main fields, for each boundary con-

dition. The first one (Subfigure a) is the normal velocity field, obtained in a closed form as

presented in Subsection 2.1. The second one (Subfigure b) is the classical acoustic intensity,

obtained also in closed form, by Eq. (14). The third one (Subfigure c) is the supersonic inten-

sity, calculated as explained in Subsection 2.2. Finally, the fourth one (Subfigure d) shows the

useful intensity, numerically computed as discussed in Section 3.2.
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Figure 3: Boundary conditions S-S-S-C: (a) Normal velocity (m/s). (b) Acoustic intensity (W/m2). (c) Supersonic

intensity (W/m2). (d) Useful intensity (W/m2)

5 CONCLUSIONS AND REMARKS

In this research the acoustic intensity produced by the sound radiation from rectangular thin

plates with four different combinations of boundary conditions is addressed. The analytical

closed form to obtain the normal velocity field to each considered case was cast by the variables

separation method to solve the Hamiltonian dual form [15].
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Figure 4: Boundary conditions S-C-C-C: (a) Normal velocity (m/s). (b) Acoustic intensity (W/m2). (c)

Supersonic intensity (W/m2). (d) Useful intensity (W/m2)
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Figure 5: Boundary conditions S-S-C-F: (a) Normal velocity (m/s); (b) Acoustic intensity (W/m2); (c) Supersonic

intensity (W/m2). (d) Useful intensity (W/m2)

In the sequel, the mathematical formulation to obtain the supersonic intensity as suggested

by [13] via spatial Fourier transform is briefly presented. The framework of the useful intensity,

firmly based on the boundary element method is also shortly discussed. Then, the supersonic

and the useful intensities for the distinct boundary conditions are computed. The most impor-

tant features in these calculi are the identification of the regions, in each case, that effectively

contribute to the radiated sound power. Although the useful intensity technique has been de-

veloped to assess the hot spots for non-separable geometries, it was applied here to rectangular
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plates, for validation purposes.

Four boundary conditions cases — two of them not found in the literature — were addressed.

These cases are S-C-S-S, C-C-C-C, S-C-C-C and S-S-C-F. Three acoustic intensities were com-

pared for all cases: The classical (also called active) acoustic intensity; the supersonic intensity,

calculated analytically; and the useful intensity, computed numerically via the boundary el-

ement method and spectral decomposition [1]. The primary application of this research is,

naturally, the noise control of vibrating plates.

The studied cases constitute a general panorama of the radiation modes, especially the corner

and edge modes. Covering almost all boundary conditions for rectangular plates found in more

complex structures, the presented results furnish a reliable source of data for researchers and

designers to localize the regions of a structure that effectively radiate sound to the far-field.
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