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Abstract. We present a multiscale finite difference method to solve problems of highly 

heterogeneous porous medium flow. Heterogeneity in permeability fields is assumed to occur 

on a wide range of length scales. Our multiscale method allows for incorporating fine-scale 

information of the permeability into coarse-scale iteration procedures. In this direction, we 

define multiscale basis functions in order to obtain discrete solutions in local problems. In 

another paper, such basis functions have already been defined by using hybridized mixed 

finite elements. In this paper, we use finite differences to do so. Our multiscale method is 

expected to be an inexpensive alternative to solve the global problem at only fine scale. 

Numerical results are presented to check the performance of the multiscale method. 
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1 INTRODUCTION 

Fluid flow problems in porous media are governed by mass and momentum balance 

equations. The momentum equation for modelling porous medium flows is the Darcy law. 

This equation poses that the flow velocity in porous media is proportional to the pressure 

gradient. The permeability is the coefficient of this equation, which quantifies the capacity of 

the porous medium to displace fluids.  

The permeability coefficient reflects the heterogeneity in porous media at all scales, which 

occurs from the porous scale to the scale of kilometers, for example. For computing 

accurately the velocity and pressure fields, it is necessary to account for the influence of fine-

scale variations in the permeability coefficient to generate reliable solutions. 

Combining the Darcy law and the mass equation, a second order linear elliptic equation is 

obtained. The development of multiscale methods for solving second order elliptic partial 

differential equations, related to liquids flowing in porous media as oil or underground water, 

has taken attention of several research groups worldwide [16]. Multiscale methods can 

provide large computational savings when applied as direct solvers for problems occurring on 

a broad range of heterogeneity scales. 

In the evolution of the numerical methods used to reach an approximate solution of 

problems modelled by Laplace and Poisson equations in heterogeneous porous media, it is 

mandatory to refer to [2]. This work proposed in the decade of 1970 the concept of 

homogenization, which could be considered as a pioneering procedure for the solution of such 

kind of problems. 

Other works regarding parallel programming and the adjustments needed in the numerical 

methods can be found in the decade of 1980, in order to make them able to take advantage of 

newer computational resources. Adjustments for parallelization consist of solving large 

domain problems dividing them by parts or blocks, so they can be iterated separate and 

simultaneously in different processors, or clusters, in order to reduce the execution time. 

An iterative procedure that was made in order to be adaptable for massively parallel 

programming has used a development based on the technique of domain decomposition and 

the association of each subdomain to a specific processor [6]; it is one of the first references 

regarding the development of such procedures. 

The MFEM (Multiscale Finite Element Method) [11] was considered fully parallelizable 

and naturally adaptable for massively parallel computers to solve porous medium problems. It 

captures the effects of the small scales and reflects them on larger scales without solving all 

details at minor scales; and it introduces a scheme with base functions. Later on, their authors 

have presented an evolution of the same method for elliptic problems with fast oscillating 

coefficients [12]. 

Another method called FD-HMM (Finite Difference Heterogeneous Multiscale Method) 

[1] has offered acceptable numerical results, with reduced computational cost and different 

scale coefficients. It overcomes the concept of classical homogenization as a method for 

solving more general problems, with time dependent coefficients. 

Later on, the MsFVM (Multiscale Finite Volume Method) [13] was introduced to solve 

elliptic problems arising from flows in porous media, involving different spatial scales. It 

consists of a pre-processing stage needed to first create the base functions, in which the 

heterogeneities of the permeability field considered in the problem are captured. This method 

has raised more developments, called Adaptive Fully Implicit MsFVM [14] and Iterative 

MsFVM [10]. 

Almost simultaneously, the FVMsFEM (Finite Volume Multiscale Finite Element Method) 

[17] was reported for solving large underground water flow problems in heterogeneous 
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porous medium problems at different scales. This method is based on a coupling between the 

finite volume discretization and the finite element multiscale base functions, by capturing the 

large scale solution in the coarse mesh structure without solving all the small details at the 

fine mesh. This method estimates the macroscopic flows through control volume segments, 

bringing the fine scale porous medium data to the larger scales by using base functions that 

were previously calculated by the finite element method. Such strategie has made this method 

an available candidate for massive parallel programming. 

Another proposal for solving such problems is the MMMFEM (Multiscale Mortar Mixed 

Finite Element Method) [9], applying a similar idea of the domain decomposition in a serie of 

subdomains. This method computes firstly base functions in local problems as a pre-

processing stage. After, considering boundary conditions and source terms, it solves local 

problems performing linear combinations of the base functions. It is important to remark that 

this method employs an algorithm without overlapping the domain decomposition. 

The recent FDHMM (Finite Difference Heterogeneous Multiscale Method) [8] has a new 

scheme for random porous media which also considers the pre-processing stage. 

A hierarchical approach of two scales incorporating post-processing stages is found in the 

MuMM (Multiscale Mixed Method) [7]. This method is based on the nonoverlapping domain 

decomposition, in which a mixed finite element method is employed to solve second order 

elliptic problems. The use of base functions reinforces the potential of the multiscale method 

for the combined parallel programming with the idea of taking advantage of several CPU-

GPU clusters. 

In recent years, the multiscale methods have provided reasonable computational savings  

for investigating physical phenomena that present wide ranges of heterogeneity scales. The 

continuous development of computational architectures and GPU’s improvement together 

with new software generations have strongly influenced the recent numerical methods and 

applied scientific programming researches, because it is precise in the exploitation of these 

newer resources where the state of the art can be found. 

In this paper, we introduce another multiscale method based on an overlapping domain 

decomposition procedure that employs a finite difference discretization to approximate 

heterogeneous porous medium flow problems. The domain decomposition is employed to 

solve iteratively global problems at coarse scale. In this method, we also define multiscale 

basis functions in order to obtain discrete solutions of a family of local problems. The 

multiscale method takes advantage of the multiple scale, and the family of local basis 

functions allows to approximate large global problems, efficiently. 

This paper is organized as follows. In the second section the governing equation of the 

problem is presented; a short description of the approximating technique for solving the 

problem is found in the third section; in the fourth, comparisons between numerical results are 

presented; and conclusions appear in the last section. 

2 GOVERNING EQUATIONS 

For simplicity in presentation, it is considered a bounded domain 2 , with Lipschitz 

boundary  . The global problem for single-phase fluid, incompressible flow in porous 

media [4] is given by 

 f u  (1) 

and  

 p Ku , (2) 
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where K is the permeability tensor divided by the viscosity of the fluid, u is the Darcy 

velocity, p is the pressure of the fluid, and f is the source/sink term.  

Substituting the Eq. (2) into (1), we have a second order linear elliptic equation given by 

 fp  )( K . (3) 

Typical boundary conditions occuring in porous medium flow problems consist of Dirichlet and Neumann types, 

respectively written as 

 bpp   on 
D  and 0nu  on N , (4) 

where n is an outward unit vector normal to  .  

The Fig. 1 shows a schematic description of the boundary conditions, based on a cell-

centered discretization. 

3 THE MULTISCALE FINITE DIFFERENCE METHOD 

We have developed the Multiscale Finite Difference Method (MsFDM) based on the 

overlapping domain decomposition procedure to address the global problem, and the 

multiscale basis functions defined by finite differences to address local problems. The 

MsFDM aims to the fast and accurate approximation of porous medium flow problems that 

can take advantage of parallel processing units. 

3.1 Domain decomposition 

A natural way to solve a second order linear elliptic equation in parallel is to divide the 

domain. In each subdomain, local problems are solved in parallel [5]. The major difficulty in 

such scheme involves imposing interface constraints between subdomains [15]. We overcome 

this difficulty working with overlapping subdomains. 

The domain   is divided into subdomains }{ j , Mj :1 , where M is the number of 

subdomains. This domain decomposition produces the coarse grid on  . In each subdomain, 

a local problem is to be solved in the fine grid. Thus, a hierarchical two-scale configuration is 

posed in the computational domain. 

 

Figure 1:  The boundary conditions of the problem 

In each subdomain j , a local problem is given by 

 jjj fp  )( K
, (5) 
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where we seek local solutions for the pressure jp . Denote the single boundary of the 

subdomain j , neighbor to the subdomain k , by kjjk  . The boundary condition 

for a local problem is written as 

 bj pp 
 on Dj 

 , 
0 jj nu

 on Nj 
 and jj Ap 

 on jk
. (6) 

where nj is an outward unit vector normal to j  and jA is a pressure value that comes from 

neighboring subdomains.  

Instead of solving the local problems (5) directly, we define local multiscale basis 

functions, and represent the discrete solutions by linear combination of such basis functions. 
 

3.2 The multiscale basis functions 

 

In this subsection, we present the MsFDM schemes that allow for incorporating fine-scale 

information of permeability into the coarse-scale iteration procedure.  

 

 The refined-scale scheme. First, we define local multiscale basis functions for each 

subdomain [9]. Considering the subdomain j , denote the basis functions by ji , 

Ni 4,...,1 , that are defined for distinct boundary-value configurations, where N is the 

number of nodal points along a single boundary jk . The basis functions for the subdomain 

j are obtained by solving the following problem: 

 jjij f )( K
, (7) 

in which the boundary condition is given by  

 bji  
 on jk

, (8) 

with 1b , on the i-boundary nodal point, and 0b , otherwise. The Fig. 2 illustrates 

boundary-value configurations with 4N  for computing basis functions ji , 16,...,1i . 

 

Figure 2: Boundary-value configurations for computing basis functions 

The local multiscale basis functions are computed by employing finite differences in the 

discretization of the problems (7), and using preconditioned conjugate gradient for solving the 

resulting algebraic equation system. In the MsFDM, the basis functions have to be available 

before performing an iterative domain decomposition procedure. So, they should be pre-

computed and stored at the memory of the machines. 

The global problem is addressed by performing the coarse-scale iterative procedure. At 

present iterations, approximate solutions to the local problem (5) can be obtained by the 
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following linear combination: 

 




N

i

jijij Ap
4

1

1

,  (9) 

where the coefficient 
1

jiA
 
is a pressure value on the i-boundary nodal point, at previous 

iterations. The Fig. 3 shows an illustration of the boundary condition for local problems with 

4N . 

 By the linear combination, there is no linear algebraic problem to be solved in each 

iteration. In this way, approximate solutions to local problems is obtained without solving 

them directly.  

 

 

Figure 3: The boundary condition for local problems with 4N  

The intermediate-scale scheme. In the refined procedure, we have to compute 4N basis 

functions for each subdomain. In order to reduce the number of basis functions we introduce 

an intermediate scale H , HHh  , where h and H are respectively the fine and coarse-

grid steps. Thus, basis functions ji
 
must be computed considering the intermediate scale, so 

as coefficients jiA  are computed by averaging the pressure. 

A balance between numerical accuracy and numerical efficiency can be determined by the 

choice of the intermediate scale. In the extreme case hH  , the global problem at fine scale 

is retrieved, for example. 

4 NUMERICAL RESULTS 

We perform experiments of slab geometry that are convenient for simulation of single-

phase flow problems. The physical domain has 12800´12800m2. The left and right boundary 

conditions are of Dirichlet type with bp 1,0 Pa and 0,0 Pa, respectively. The top and bottom 

boundary conditions are of Neumann type with no flow. There is no source term 0f . This 

slab geometry problem is illustrated in the Fig. 4. 
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Figure 4: The slab geometry problem 

The heterogeneous permeability fields are produced through stochastic realizations based 

on the relation )exp(0 KK  , where e  is a self-similar field (Gaussian) characterized on 

the reference [3], kgsmK /100.1 311

0

 , and d  is chosen in order to set a highly 

permeability ratio. 

In these experiments, we consider the extreme case HH  , where the coefficients jiA  are 

computed averaging pressures on the entire single boundary. We perform comparisons of the 

MsFDM solutions with other solutions obtained by using a mixed finite element combined 

with an iterative domain decomposition method (MFEM) [6]. The MFEM is an accurate 

numerical solver. Global errors are evaluated for different permeability ratios Kmax/Kmin and 

coarse grids of 8´8 and 64´64.  

Table 1 – Global errors for MsFDM 

Kmax/Kmin Global Error 

8´8 64´64  

101  2.44E-02 1.57E-02 

103 6.04E-02 3.27E-02 

106  1.29E-01 4.85E-02 

 

In Table 1, the results for comparisons of global error are shown. As the permeability ratio 

increases, the global error presents larger magnitude. We can note that the global error is 

reduced when considering the more refined coarse grid of 64´64. Results of pressure field 

for MFEM, MsFDM 8´8 and MsFDM 64´64, considering the permeability ratio of 106, are 

depicted in Fig. 4. Following the flow from left to right, a good agreement between pressure 

curves of MFEM and MsFDM 64´64 is observed. 

In Table 2 we can find the results of number of iteration and execution time under a coarse 

grid refinement in the MsFDM, considering the permeability ratio of 106. As the coarse grid is 

refined, the number of iteration and execution time increase significantly.  

Table 2 – Computational performance in coarse grid refinement 

Coarse grid Iteration number Execution time (s) 

8´8 1391 4,04 

64´64 24530 61,71 

 

Simulations of transport contaminant, for example, in this flow field would require a very 
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accurate velocity field. The MFEM solver is able to compute accurate flow velocity fields 

even for highly heterogeneous media. Now, we present the results of flow velocity field for 

comparison between MFEM and MsFDM 64´64, considering the permeability ratio of 106. 

In the Fig. 5 we can see the flow velocity fields illustrated in arrow fashion, overlapping the 

permeability fields. Again, we note a good agreement in these results. 
 

 
(a) 

 

(b) 

 
(c) 

Figure 4: The pressure field for (a) MFEM, (b) MsFDM 8´8, and (c) MsFDM 64´64 
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(a) 

 
(b) 

Figure 5: The flow velocity field for (a) MFEM and (b) MsFDM 64´64 

5 CONCLUSIONS 

Despite the comparisons between MsFDM and MFEM solvers have shown a good 

agreement in the results, performance measures such as iteration number and execution time 

are to be improved. We suggest to implement a SSOR preconditioner in the gradient conjugate 

procedure in order to obtain more computational efficiency. 

There is a high computational cost in computing the local multiscale basis functions. But 

this computation is performed at once, and the basis functions are stored at the memory. 

Therefore, we consider this procedure as a pre-processing stage. That is, this computational 

cost should not be accounted into the cost of the domain decomposition iteration procedure. 

The MsFDM is presented as a solver for linear elliptic problems. To accomplish non linear 

problems, updated local multiscale basis functions should be computed at each iteration as the 

permeability field is changed by new pressure field. In this situation, the computational cost 

of computing the local basis functions is increased. 

The MsFDM fits well in heterogeneous processing units (CPU-GPU), and is naturally 
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adaptable for massively parallel computers, providing better performance. 
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