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Abstract. We consider the problem of pricing fixed-income derivatives with the interest
rates governed by short rate stochastic processes. We model the financial derivatives
via the Feynman-Kac theorem, transforming the conditional expectation problem into
a partial differential equation. We then apply a finite difference method to price both
first and higher-order derivatives to compare them against closed-form solutions. In
the case of Callable bonds, no closed-form formula exists and we compare our results
against other numerical method found in the literature. Finally, we engineered some
other exotic contracts to extend the results
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1 INTRODUCTION

Fixed-income derivatives are contracts which have the payoff contingent on the evo-
lution of interest rates. The derivatives market have become sophisticated as more com-
plex products aiming to reduce risks appear, complicating the pricing and hedging en-
gines. Our aim is to price interest rate derivatives. We do this twofold:

* via the closed form expressions; and
* via the Modified Full Implicit numerical method found in the literature

With the exception of the Callable bond - which does not have a closed form pricing
formula, we compare both approaches for a variety of interest rate derivatives. For the
Callable bond price problem, we make a comparison with another numerical method
found in the literature. We extend the list to other derivatives that do not exhibit closed
form expressions, calculating their prices via the Modified Full Implicit method devel-
oped in [4].

We divide the financial instruments into two categories, adopting the derivative’s
order classification of [16] due to the nature of numerical approximating method via
Partial Differential Equations.

Derivative instruments of first order are those whose payoff depends only on the
quantity we are directly modeling. A bond or an interest rate cap/floor depends directly
on the probabilities of the interest rate. On the other hand, a bond option depends on
the price of the bond, which in turn, depends on the interest rate. So the bond option is
a second order derivative.

Derivative instruments of second order are computationally more expensive than the
first order ones, because we must solve the lower level first and use the results to feed
the higher level problems. The numerical price of a bond option, for example, is found
by solving - via a PDE and its associated terminal condition - a zero-coupon bond back-
wards from S to 7, where 7' is the maturity of the option and .S is the maturity of the
bond. Then, using the bond price at time 7" as the new terminal condition, we solve
again the PDE in [0, T to get the price of the option at time zero.

Higher order derivatives mean that we have to solve more than one numerical prob-
lem. Numerical errors in lower levels can contaminate the higher levels, which could
result in prices that are completely different from the fair prices.

Following [2], the economy we consider in this work has the trading interval [0, 7.
The uncertainty under the real-world probability measure is completely specified by the
filtered probability space (€2, F,P), where €2 denotes the complete set of all possible
outcome elements w € (). The information available is contained within the filtration
Fi>0, such that the level of uncertainty is resolved over the trading interval with respect
to the information filtration. The last term, completing the probability space, is called
the real-world probability measure IP on (€2, F), since it reflects the probability law of
the data.

With the money market account as numeraire, the price of a derivative contract at
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time ¢ is just the expectation, given all relevant information up to ¢, of the corresponding
terminal payoff G(rr) in some probability measure QQ, equivalent to the probability
measure P, called risk-neutral measure. This measure makes the derivative contract a
martingale under Q. A detailed explanation about equivalent martigale measures, risk-
neutral pricing and other stochastic calculus tools go beyond the scope of this work, but
can be found in [2, 12, 10, 13].

From now on, we consider the economy driven by the Vasicek short-term interest
rate model [15]. The diffusion process is a mean-reverting version of the Ornstein-
Uhlenbeck process. The short-term interest rate process 7; is defined as the unique
strong solution of the Stochastic Differential Equation

dry = a(b—ry)dt + O'thQ (1)

where a, b and o are strictly positive constants [10]. In Eq. (1), b designates the mean
reversion level, a is the reversion speed and o is the volatility of the short rate. Under
the martingale probability measure QQ the process W< is a one-dimensional Brownian
motion.

The parameters of the model can be historically estimated (see e.g. [3]) or calibrated
so that the spot rate model fits the discount factor curve. If the market bond prices are
arbitrage-free, so the calibrated interest rate model will be [11].!

It can be proved with the use of Ito’s formula that the interest rates can be evaluated
by

t
1 =b+e "(ro —b) + Ue‘“t/ e dWE, (2)
0

where 79 > 0, so that the short-rate process 7, has a conditional Gaussian probability
distribution with mean

E® [re| Fo] = b+ (ro — b)e ™ (3)

and variance
2

Var [r|Fo) = (1 — =), (4)
2a
The market price of risk is assumed constant with b = b’ — ’\7;’ Thus, the short-rate
process is a process under the martingale measure QQ equivalent to the process P, with a
translation of the long run level of the short rate.

The numerical solutions found below are based on the PDE (see the Discounted
Feynman-Kac Theorem in Appendix A)

ou ou  o?0*U B

E‘FCL(Z)—T‘)E*F?@TZ—TU (5)

'In fact, the Vasicek model can not fit perfectly the bond prices, but an approximation can be done as
will be seen later.
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with terminal condition
U(T,r) = h(r) (6)

and boundary conditions specified according to each instrument. It is worth noticing
that a preliminary and important step is taken by means of introducing a coordinate
transform with respect to the x-axis in PDE Eq. (5) (see [4] for details), before entering
with the Modified implicit method.

2 FIRST ORDER DERIVATIVES
2.1 Zero-coupon bonds

Bonds are debt instruments under which the owner receives interest from the issuer
in form of coupon payments and/or the difference between the prices in the days of
trade and maturity. Commonly issued by governments and corporations to finance their
spending and investments, due to its high liquidity, financial engineers use bonds to
design other securities, risk managers use them to replicate portfolios, speculators to
bet on interest rate changes and central bankers to plan monetary policies.

When a zero-coupon bond is considered free of default risk, its arbitrage-free price
under the risk-neutral measure Q is formulated as

P(t,T) = E2 [e*ffrsdsm} YV te0,T]. 7

Zero-coupon bonds are the main product in the unconditional derivatives class. They
serve as a basis for a variety of interest rate derivatives.

The following expression developed by [15] is used to calculate the price at time ¢ of
a zero-coupon bond that pays 1 at time T:

P(t,T) = a(t, T)e D™, (8)
In this equation,
1 — efa(Tft)
Blt.T) = —— )
a
and
B(t,T) —T +t)(a*b — 0.502 2B(t,T)?
a(t,T) = exp (8¢, 1) +a2)(a 0507) ¢ é(lc; ) (10)

To find the estimates of prices of a zero-coupon bond via finite difference methods
we proceed as follows.
We prescribe the terminal condition

U(T,r)= NP, (11)
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where /N P is the notional principal of the contract, generally set as 1. We also truncate
the infinite domain between r,,;, and 7., to establish the boundary conditions

Ult, "min) = 0 (12)
aU(tv rma:r) o
5 = 0. (13)

Now, setting the parameters a = 0.1, b = 0.1 and o = 0.005 as an illustrative
example, with 800 points in the spatial grid and 5 time-steps per day for a two-year
bond, boils down to the prices illustrated in Figure 1. We observe that the solution
converges fast to the analytical solution (according to the closed form expressions of
[15]) in the spatial domain. We also notice that there are huge left boundary numerical
errors apparent in Figure 2. This fact is due to our failure in specifying correctly the
boundary condition. This is in fact a source of discussion in financial engineering books
and papers like [7] and [5], respectively. We still note in Figure 5 that if we specity the
Dirichlet homogeneous boundary conditions, namely

Ult,Tmin) =0 and  U(t, 74) =0, (14)
or the Neumann homogeneous boundary conditions, i.e.,

a(j(ta rmin) _ and 8U(f7 rmaz‘)

or or = Oa (15)

then the numerical solution converges immediately towards the analytical solution is
space. Reinforcing our early statement: boundary conditions do not affect the solution
in the domain of interest when using the Vasicek model and the truncated domain is
reasonably large.

Figure 4 shows the prices for one-year zero-coupon bond considering three different
shapes of the term structure (see Figure 3) when r(¢) = 0.09. An increasing yield curve
results in cheaper bond prices and a decreasing yield curve results in more expensive
bond prices. Humped yield curve results in prices in the middle, close to the cheaper
prices, but depending on the maturity of the bond.

The relative errors are calculated according to the following measure:

__ |numerical — exact|

e

(16)
exact
In practice, it is assumed that all market information is available in the interest rates
data or quoted liquid instrument prices. So, we need to perform the task of finding the
best-fit parameters in a parametric model in comparison with an observed quantity.
Calibration aims to price and hedge non-liquid or non-traded instruments, which
does not have much information available in the market. A calibration method seeks the
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Figure 1: Zero-coupon Bond Price

Figure 3: Term Structures of the Interest Rates
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Figure 2: Pricing relative error
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Figure 4: Comparison of parameters

model parameters that results in the minimal error between model prices and observed
market prices, such as bond or cap prices. These parameters can be used to price callable
bonds and exotic options for instance.

Figure 6 below gives us the calibration of the Brazilian 1-month (yearly compound-
ing) Term Structure of the Interest Rates observed on 19/09/2014 at [1] for the Va-
sicek model, using the Sequential Quadratic Programing algorithm of [9]. The param-
eters found were 1o = 0.10844, o = 0.35832, 5 = 0.165291 and 0 = 0.18237. One
month later, on 20/10/2014 the parameters found were 7o = 0.11175, o = 0.3948, 5 =
0.171651 and ¢ = 0.20463 with the term structure shown as in Figure 7. If we choose
the GMM analysis described by [3] to estimate historically the parameters, the 3-month
brazilian interest rates observed between 04,/04/2000 and 19/09/2014 results in o =
0.1265, 3 = 0.0802 and o = 0.0218.

As stated by [7], the Vasicek model cannot perfectly fit the yield curve. To this end,
a new class of short-rate models have been developed, like models with time-dependent
parameters and lognormal dynamics.
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Vasicek Zero coupon Pricing

Analytical solution

1610 Neumann homogeneous
Drichlet homogeneous

141
121
o T
L2
o
0.8r
0.6+
04r
0.2r
0 I I I I I I I I )
0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2
Annual Interest rate
Figure 5: Comparison of boundary conditions
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2.2 Coupon bonds

A coupon-bearing bond can be seen as a portfolio of zero-coupon bonds with ma-
turities equal to its associated coupon paying date and face value equal to the coupon
rate.

Coupon-bearing bonds which coupons remains constant over time is just the cumu-
lation of payments P, discounted with the particular zero-bond prices P(¢,T;,):

[

N
P(t.Ty) = Y E® [Pne_-t nds|E] Y e [0, T (17)

n=1

Instead of solving a set of zero-coupon bonds, which can remarkably increase the
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computational effort, we just add the coupon value K at the due date ¢; through the
following jump condition [16]:

u(r, b, T) = u(r, tf, T) + K(ty). (18)

The terminal condition and the boundary conditions are equal to those of the case of
zero-coupon bonds, determined by Eq. (11) with NP = 1000 and Eq. (15), respec-
tively. The conclusions are similar to those of zero-coupon bonds as Figures 8 and 9
indicate. It is important to observe the discontinuity caused by the jump conditions in
the coupon dates (see Figure 10).

The parameters were a = 0.5, b = 0.1 and 0 = 0.1, with 1000 points in the spa-
tial grid and 5 time-steps per day for a one-year bond with 10% coupons paid every
trimester. A debt issued in this set-up would rise $1281 per bond if the current short rate
is 10.1%.

Henceforward we will restrict the analysis to the domain of interest, i.e. € [—0.05, 0.5].

We have also performed numerical experiments with coupons that depend on the
level of the interest rates. Or else, the coupon rate is as high (low) as the instantaneous
interest rate. The jump condition then becomes

u(r,t;,T) = u(r, t}, T) + K(r). (19)

In this case, an increasing shape (instead of the decreasing shape of the previous case)
appears for the pricing solution (see Figure 11).

Vasicek Coupon Bond Pricing  Full Implicit method vs Closed Form solution Vasicek Coupon Bond relative error
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Figure 8: Coupon Bond Price Figure 9: Pricing relative error

2.3 Forward-rate Agreements

Forward Rate Agreements are forward contracts on interest rates. A forward interest
rate can be derived from expectations, solving the PDE with its appropriate terminal
condition, or simply using arbitrage-free arguments over the yield curve.
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Vasicek Coupon Bond Pricing  Full Implicit method Vasicek Variable Coupon Bond Pricing  Full Implicit method
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Figure 10: Coupon Bond Price surface Figure 11: Variable coupon bond prices

Let us assume a yearly compounding interest-rate. Then the one-year rate, one year
from today, is given by

(1+oR1)(1+1Ry) = (14 oRs)?, (20)

where

of?1 is the one-year interest rate today,
oRy is the two-year interest rate today,

1Ry is the forward interest rate for one year, a year from today.

The last expression stands for the rate between years 1 and 2, which are implicit in the
yield curve (see [14]).

By pricing zero-coupon bonds of various maturities, we can obtain the continuously
compounded term-structure of the interest rates. This is equivalent to a forward curve
between today and the corresponding maturity (see the magenta line in Figure 12). The
forward rates can be converted into simply compounded ones (see Figure 13).

Let R(t,t,S) denote the continuously compounded today’s interest rate with matu-
rity in S. Denote R(t,T,S) the today’s interest rate contract from T with maturity in
S > T > t. Based on arbitrage-free arguments on the yield curve we have that

o~ RELT)(T—t) = R(£,T,8)(S=T) _ ,—~I(t:t,5)(S—t) 1)

By simple algebraic manipulations, the forward rate from T to S reads as

R(LT,S) = _Flcr) (R(LET)(T — 1) — R(t,1,8)(S — 1)]. (22)
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For an arbitrarily fixed ¢, seen as present time, and varying 71" from 0.5 to 1.5 years
we derive the forward curves with maturities S up to 10 years (see Figure (12)). The
parameters used in the bond pricing is a = 0.15, b = 0.115 and o = 0.03.

A forward rate agreement is the exchange of a fixed interest rates for a floating in-
terest rate in some prescribed future date. For simply-compounded interest rate, the
price of a forward contract can be calculated by looking at the yield curve. Equation
(23) below calculates the fixed rate at which the contract’s price values zero, that is, the
forward rate.

EQ eI rds (P(T, §)1 — 1) | F
K = [ T(T(,s P(t.S) ) t} -

)
= ! (P(t’T) — 1) . (24)
7(T,5) \ P(t,9)
Following the same reasoning for continuously compounded interest rates, we obtain
that the fixed rate that makes the FRA’s price values zero is the forward rate given by
Eq. (22).

Let us give an example of the use of FRA inspired in the examples given by [14]:

- Due to unforeseen circumstances the ABC Corp’s” treasury manager anticipated a
need for a 2 year borrow of 10 millions one year from now, for which it would pay an
interest rate determined by the then current 2-year continuously compounded floating
interest rate. It is important to ABC Corp to lock today in the prevailing yield curve to
hedge against the exposure to the 2-year interest rate.

The today’s spot 1-year yield is 10.09%, and the today’s spot 3-year yield is 10.19%.
From Eq. (22) the 2-year forward rate in one year is 10.24%, which means the rate fixed
for the 1 x 2 FRA contract.

In the case the ABC Corp enters in this FRA, it will lock its 10 million debt in
10.24%. The result is:

i) if in 1 year the 2-year interest rate is 0.26% higher than 10.24%, ABC Corp will
receive the difference in the FRA and will pay 10.5% in its debt;

i) if in 1 year the 2-year interest rate is 10%, ABC Corp will pay 0.24% to its FRA
counterpart and 10% to the lender.

It is noteworthy that the ABC Corp hedged its loan in 10.24%.

There are cases where the borrower has an income fixed to some interest rate K and
wants to lock its debt in it to match its assets and liabilities. If K differs from the current
forward rate, the price of the contract will be given by

FRA = N[P(t,8)(r(T,S)K + 1) — P(t,T)] (25)

2This is a fictitious company.
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for simply-compounded interest rate, or by

In(P(t,S)) B In(P(t,T))

S—-T S—-T (26)

FRA=(S—T)P(t,S) |K +

for the continuously compounded interest rate case.
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Figure 14: FRA Figure 15: FRA absolute error

We end this section stating that, if we can obtain, numerically, the prices of a zero-
coupon bonds, we can efficiently solve the FRA prices via arbitrage-free arguments, i.e.,
via the interest rate term structure.

2.4 Caps, Floors and Swaps

The example shown in Figure 16 (respectively 18) stands for a 1-year option protec-
tion against a rise (fall) in the interest rate r(7") above (below) the strike I = 0.1. If
the caplet - a single cap, is exercised, the PDE terminal condition (r(7") — I) times the
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principal is paid one year later. In the case of a floorlet - a single floor, if exercised, the
contract pays (I — (7)) times the principal one year later. The parameters were set
for both examples as a = 0.2, b = 0.12 and o = 0.03.

Vasicek Interest rate cap pricing Vasicek Interest rate cap relative error
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Figure 16: Interest rate Caplet price Figure 17: Pricing relative error
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Figure 18: Interest rate Floorlet price Figure 19: Pricing relative error

A caplet/floorlet can be viewed as an option to enter in a Forward Rate Agreement at
a specified time 7" and at a rate K. Since these contracts have options embedded, that
is, they are options and not obligations. Even in the case K equals the correspondent
forward rate they will not have zero value.

An interest rate cap or floor at a rate /K, gives the owner the right to enter in a series
of J FRA’s every % year for I’ years.

It is worth noticing the following relationship:

caplet, (K') — floorlet; r(K) = FRA, 7(K), 27

that is, to buy a cap and sell a floor is equivalent to enter in a Forward Rate Agree-
ment that pays a rate equal to the strike and receives the floating rate. The relation Eq.
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(28) expresses the Put-Call parity for caps and floors. It provides us with an arbitrage
condition for building and pricing one contract from two of them.
A Swap is a series of FRA’s. Consequently,

Ca‘pt,Sj,T(K) - ﬂoort,Sj,T(K) = Swapt,Sj,T(K)7 (28)

Figure 20 shows the solutions for single contracts, where the 1 x 2-year swap prices
are calculated from the put-call parity analytically and numerically. The parameters are
setas a = 0.2, b = 0.12 and o = 0.03. The fixed rate for the swap (or equivalently, the
strike for the cap and floor) is set as 10%.

Vasicek Interest rate Swap Pricing
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Figure 20: Swap by put-call parity

3 HIGHER ORDER DERIVATIVES
3.1 Bond Options

Bond options belong to the higher order derivatives class. Recalling, a zero-coupon
bond call (put) option gives its holder the right, but not the obligation, to buy (sell) a
zero-coupon bond P(t, S) for a predetermined strike price K at time 7" € (¢, S). Thus
we must find the price at time T of the zero-coupon bond with maturity in S, and then
use this solution in the terminal condition

U(T,r) =max(P(T,S) — K,0) (29)

for the option’s PDE, that runs from 7" to ¢.
The price of a zero-coupon bond call option can be obtained by solving

ZCB, = NEU [e*ffrsdsmax (P(T,S)—K,O)U—"t} v te0,7].  (30)
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[8] found the closed-form solution to the above conditional expectation problem so
that the zero-coupon bond call option can be directly calculated by

ZCB. = NP(t,S)P(d) — KP(t,T)®(ds), 31
where
NP(t,S o
4 = In (KPEt,T%) 3 (32)
Op
dg == d1 — Op (33)
and
1 — e~ a(S-T) 1 — e—2a(T—t)
= ) 34
=9 < a ) 2a (34

The function ®(d) corresponds to the probability of a standard normal random vari-
able being less than d, namely

d
®(d) = / \/127€_é$2d$' (35)

The parameters of the numerical simulation were set as a = 0.1, b = 0.1 and 0 =
0.02, with 1000 points in the spatial grid and 5 time-steps per day for a one-year option
in a two-year zero-coupon bond with strike K = 0.8. Again, the conclusion is similar to
those of the last section, as can be seen in Figures 21 and 22: we notice in these figures
that the errors at the left boundary does not contaminate the solution. Furthermore, in the
case these errors contaminate the solutions - which could be perhaps the case of other
numerical methods, then the solution would deteriorate because the same numerical
scheme would be applied twice.

The relative errors are calculated according to the following measure:

_ |numerical — exact|

(36)

‘ Principal

Figure 23 shows the surface that relates the prices of the zero-coupon bonds from its
maturity to the option’s maturity, against interest rates and time. We can clearly see that
the solution is spurious oscillation free. We also see in Figure 24 that the level curves
exhibit very high bond durations in the extreme negative interest rates region.

For risk management purposes, zero-coupon bond put options can be viewed as
caplets, protecting the owner against the interest rate rise. Conversely, zero-coupon
bond call options can be viewed as floorlets, protecting the owner against the interest
rate fall.
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Vasicek Bond option relative error
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Figure 22: Zero-coupon Bond Option Pricing
Figure 21: Zero-coupon Bond Option Price Error
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Figure 23: Zero-coupon Bond Pricing solution
surface Figure 24: Zero-coupon Bond Pricing levels

The price of a zero-coupon bond put option can be obtained as
ZCB, = NE© [e* S reds ax (K ~ P(T,5), 0) |ft} Vte[0.T]. (37)
Then the zero-coupon bond put option can be directly calculated by
ZCB, = KP(t,T)®(—dy) — NP(t,S)P(—d;) (38)

A put-call parity can be straightforward developed for pricing bond put options from
calls. At option maturity 1" we have that

ZCB.(T) — ZCB,(T) = P(T, T, S) — K. (39)

In other words, the difference between the payoffs of call and put options on the zero-
coupon bond with maturity in S is equal to the difference between the market price of
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the bond and the strike price /. At present time ¢ we have
ZCB.(t) — ZCBy(t) = P(t,1,5) — P(t,T,T) K, (40)
which refers to the put-call parity for bond options.

3.2 Options on coupon bonds

A closed-form expression for pricing options on coupon-bearing bonds was also de-
veloped in [8]. It follows:

The trick consists in a process to transform an option on a coupon-bond into a port-
folio of zero-coupon bond options.

Let us consider the price P(r,t, 71, ..., T) of a coupon-bearing bond paying .J coupons
catj = 1, ..., J dates and the following payoff of an option that gives the right to buy
this bond paying the strike /s at 7:

CBB. = max(P(r,t,T},....,Ty) — K,0). (41)
To find its price, we first need to solve a nonlinear equation problem to find # that makes
P t,Ty,....T;) = K. (42)

We then match the artificial strikes /; with each of the unit discount price values in the
coupon dates using 7, or else,

]\'j = P(f, t, T1, ceey TJ), (43)

Reminding Eq. (31) the price of the option is given by

J
CBB. =Y _¢;(ZCB.(r,t, 15, T}, K;). (44)

J=1

The numerical price can be found by simply solving the same problem as before, but
entering with the coupon-bond price as initial condition of the option problem, instead
of the zero-coupon bond.

Figures 25 and 26 illustrate the case of a one-year option that gives the right to buy
a 5% semiannual 2-year coupon bond for $0.93. We used a 1000 spatial points grid and
with parameters set as a = 0.1, b = 0.07 and ¢ = 0.015.

Figure 27 compares the prices of one-year bond options with the same strike, where
we vary the 2-year semiannual coupon size. The conclusion is as expected: the price
of the options decreases as the coupon payments does. The zero-coupon bond option is
the cheapest one.
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Figure 27: Comparison of coupon bond options

3.3 Swaptions

Swaptions are contracts that give the owner the right to enter in a single Swap. If
at the option’s maturity the swap rate is above the strike, the option is exercised and
the owner enters in a swap contract. As highlighted by [14], a long swaption can be
employed to take advantage of the current low financing costs to some future uncertain
project without being locked into a long-term swap. Another advantage is that swaption
is cheaper than interest rate caps, which could be used for the same purposes.

Formally, the yield-based forward-starting payer Swaption for an underlying swap is
given as

SWPTy = RO [e 78 max (SWAPy,o)m} vre(0,7],  @45)

where SWAPy- is calculated as the equivalent representation for a swap contract, ex-
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changing a yield-based floating rate at § — 1 payment dates paid in-arrears is

ﬁ_l Tiiq
S e B s (L T, D) — K) 71

=1

SWAPy = NE© (46)

—1

(T TPt Ti)). (4T)

1

=

- N<P(t, T)) — P(t,Ts) — K

(2

The payoff of the Swaption at time 7" also can be viewed as
SWPT, — E° [e— S reds ax (L — P(T, §)eKTTS), 0) |]-"t] YV s e [t,T](48)

Then we can follow the model of [8] to calculate the price of the Swaption:

SWPTy = NP(t,T)®(—dy) — NP(t,S)eX" 0o (—dy), (49)
where
In <P(t,S)eKT(T’S>) 4 U_ﬁ
4 - P(t,T) 2 (50)
Op
d2 = d1 — Op (51)

and o, 1s given by Eq. (34).

The example shown in Figure 28 stands for a one-year option to enter in a two-
year swap and receive 0.13 of the principal at maturity and pay the floating rate. The
parameters were set as a = 0.1, b = 0.07 and o = 0.015.

The relative errors shown in Figure 29 are calculated according to Eq. (36).
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Figure 28: Swaption pricing
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3.4 Callable bonds

A callable bond is a bond in which the issuer has the option to redeem it prior to its
maturity for a specified price. There are other over-the-counter derivatives, e.g. swaps,
with this feature embedded. The calling can be allowed continuously, in an interval of
time or in a set of dates, and the notice of the exercising decision is typically, but not
necessarily, made in advance.

Issue callable bonds are interesting when the firm expects falling interest rate. Instead
of maintaining high coupon payments, the issuer can call the debt back and issue another
debt at lower rates. On the other hand the issuer will pay for this flexibility, raising lesser
funds than they would do selling straight coupon bonds.

Puttable bonds refer to the opposite, where the owner has the right to require the
principal payment earlier. It is interesting to embed this option in the contract when
the buyer expects rising interest rates. A bond may contain both callable and puttable
options embedded.

To solve numerically a callable bond which contains a discrete set of specific call
dates (called semi-American option®), we resort to the price updating algorithm de-
scribed in [5]. The authors solved the callable bond price numerical problem through
the Finite Volume method.

Suppose a coupon-bearing bond with M coupons and N < M call dates coinciding
with the last /N coupon dates and /N notice dates. The steps for pricing are the following:
- Solve the coupon-bearing bond with the Modified Full implicit method from bond
maturity 7' to the last notice date 7,,,, adding the appropriate coupon at 7.,,. Denote
by K(r,T,,,) the value of the bond immediately before the notice date (backwards in
time).

- Denote X (¢..,) the call price at time t.,. This is the value the issuer pays if he/she calls

the bond back. Discount it from 7, to 7,,,, adding the coupon C, or else,
(X (tey,) + ClP(r, Ty, — Tens)- (52)
- Compute the break-even interest rate 7, via
(X (ter) + ClP(ro, Togy — Ters) = K (16, 7). (53)

The break-even interest rate is the one which is not optimal either calling the bond back
or maintaining it. It is important to highlight that issuer’s optimal decision is to redeem
the bond if the value of the callable bond exceeds the present value of the call price plus
the coupon; in other words, if the value to refund is greater than the cost to call the bond
back.

3American options are the class of options that can be exercised anytime during its life. A semi-
American contract can be exercised in a predetermined set of dates or periods prior to its maturity.
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- In order to preclude arbitrage, update the value of the bond with the following rule
(denoted by method 1 in [5]):

7 'n - _ .
M K(r,7,..) otherwise,

; o _ e <
]((’I“ T+ ) — {[X(th) + O]P(7”TTLM TCM) 1f7 ~ T’b

and solve the coupon bond PDE to the next notice date.
- Repeat it for the remaining call dates to get the price of the callable bond at time zero.

In the case of American callable bonds, i.e., contracts which the issuer can call the
bond back anytime prior to maturity, the break-even interest rate is calculated continu-
ously and the value K (r, 7;7) is updated in order to prevent arbitrage opportunities.

We now compare the callable bond prices obtained according to the Modified Full
Implicit method and according to [5]. We do this using the example given in [5] itself,
along with the numerical results for the prices they presented. The example goes as
follows. Suppose that the short-term interest rate follows the Vasicek dynamic with
parameters

a = 0.44178462, b = 0.0348468515 and o = 0.13264223.

We also assume that the market price of risk is A = 0.21166329. We intend to price
a callable bond maturing in 20.172 years, paying 4.25% yearly coupons with notice
period equal to 0.1666 years. Table 1 lists the 10 call prices relative to the possible call
dates (years to maturity). Table 2 presents the comparisons.

It is not clear how many points in the spatial grid the authors used to reach those
prices. However, we inferred from some data in their paper that the grid size was 2400
points. So we did the same. In this scenario, the discrepancy between prices in both
methods was less than 0.6% for an interest rate range varying from 2% to 20%. Figure
30 exhibits the prices of the callable and straight bonds. As expected, the owner pays
less to give the issuer the right to call the bond back. Moreover, the break-even interest
rate we obtained was —13.64%, very similar to that of —13.56% found by [5].

By comparing them, we can strongly indicate the good performance of both [5]’s
finite volume method and our Modified Full Implicit finite difference method in solving
numerically the callable bond price problem.
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Table 1: Call dates and prices

Time to maturity | Call Price
1-5 1.000

6 1.005

7 1.010

8

9

1.015
1.020
0 1.025

—_

Table 2: Comparison of callable bond pricing with Modified Full Implicit method and the finite volume
method developed by [5]

Interest rate [3] This work | Absolute error | Relative error
0.02 0.82627 | 0.83015 0.00388 0.47%
0.03 0.81007 | 0.81392 0.00385 0.48%
0.04 0.79420 | 0.79803 0.00383 0.48%
0.05 0.77868 | 0.78247 0.00379 0.49%
0.06 0.76348 | 0.76723 0.00375 0.49%
0.07 0.74860 | 0.75232 0.00372 0.50%
0.08 0.73403 | 0.73772 0.00369 0.50%
0.09 0.71977 | 0.72342 0.00365 0.51%
0.10 0.70578 | 0.70942 0.00364 0.52%
0.11 0.69214 | 0.69571 0.00357 0.52%
0.12 0.67875 | 0.68229 0.00354 0.52%
0.13 0.66565 | 0.66915 0.00350 0.53%
0.14 0.65283 | 0.65628 0.00345 0.53%
0.15 0.64027 | 0.64369 0.00342 0.53%
0.16 0.62798 | 0.63135 0.00337 0.54%
0.17 0.61594 | 0.61927 0.00333 0.54%
0.18 0.60416 | 0.60744 0.00328 0.54%
0.19 0.59262 | 0.59586 0.00324 0.55%
0.20 0.58132 | 0.58452 0.00320 0.55%
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Figure 30: Callable and Straight bond prices

3.5 Other interest rate derivatives

In the earlier sections, we have examined the PDE made solutions of some important
fixed-income contracts of the financial market which exhibit in the literature closed form
pricing formulas or an alternative numerical solution solved via some other methodol-
ogy (which was the case of the callable bonds). It is impossible to fill up an exhaustive
list of interest rate derivatives due to the constant demand of the economic agents for
customized products and the speedy progress of financial engineering. However, we
shall present some other common instruments and their associated terminal condition.

- Captions and Floortions are like Swaptions. They are compound options in the
sense that the owner have an option to enter in another option. A Caption is simply the
right to buy or sell an Interest Rate Cap at some time 7' for a prescribed strike price A’
with maturity in S. They give more flexibility to the risk manager. Its corresponding
PDE terminal condition, i.e., its payoff, is

CPT(T) = wmax(CAP(T,S) — K, 0), (54)

where w is 1 if the contract gives the right to buy a Cap and —1 otherwise.
In contrast to this, the Floortion offers the owner the right to buy or sell an Interest
Rate Floor. Its terminal condition or payoff reads as

FLT(T) = wmax(Floor(T,S) — K, 0). (55)

The strategy here is the same we previously used for pricing bond options and swap-
tions. We compute the T-price of a cap/floor and feed the above terminal conditions to
solve for caption/floortion.

- Range notes are derivatives that pay continuously the interest on a notional princi-
pal whenever the interest rate lies between some prescribed lower (r;) and upper ()
bounds. The corresponding PDE for this case differs from Eq. (5) - which adapts to all
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cases treated up to now - and was devised by [16]. More explicitly, it reads as

a_U_|_ (b_ )a_U+O-_282_U
ot @ g or 2 Or?

with terminal condition

+1(r) = rU (56)

U(T,r) =0, 57)
where
I(r)=r if r <r <r, andis zero otherwise. (58)

- Asian options are the class of derivative instruments whose payout is determined
by some function of the interest rate. For example, the moving average cap. Its terminal
condition is given by

N
U(T,r) = max (%;n—f(,()), (59)

If exercised, the contract pays the difference between the mean of the IV last observa-
tions of the interest rate and the strike K, instead of the last observation of r, as the
standard interest rate Cap does. An important example of Asian options will be given
ahead. This will be an important result in this work, since we will provide good esti-
mates for pricing a certain Brazilian interest rate derivative.

- Barrier options are contracts that start or cease to exist when a prescribed barrier is
reached. For example, an Up-and-Out Cap: this specific contract have terminal condi-
tions expressed as

U(T,r) =max(r(T) — K,0) (60)
and
U(t,r) =0 if r(t) > rp forsome t. (61)

The interest rate Cap ceases to exist whenever r(¢) touches the barrier 5 and pays
max(r(7T) — K, 0) otherwise.

- American options are those that can be exercised at anytime during the life of the
contract. This optimal stopping problem of finding the time to exercise the option,
results in the following PDE problem

oU oUu  ¢20%°U
- S P - _rU<
> +a(b—r) o + 5 52 rU <0, (62)
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with the terminal condition

U(T,r) = h(r) (63)
and the no-arbitrage constraint

U(t,r) > h(r), (64)

where h(r) denotes the contract payoft.

It means that the holder of the option controls the early exercise feature [16] and
the writer can earn more than the risk-free rate if the option was not optimally exer-
cised. Since American options give its owner additional rights, they probably have
higher prices. This difference in prices are called the early exercise premium.

Swaptions, Bond options, Captions and many other derivatives can have early exer-
cise features. The class of derivatives which the decision dates is specified as a set of
discrete days or intervals is known as Bermudan Options, like the Callable bonds treated
above.

In order to exhaust our list of numerical pricing problems and attest the good per-
formance of the Modified Full Implicit method, we engineered a Digital Bond Option
pricing. It is a derivative that pays

T = {1 ifP(T,8) = K >0
0 otherwise.
It means that the holder receives 1 if the bond price exceeds the strike, and zero other-
wise.

So, we priced a digital option which pays 1 if the price of a 4-year zero-coupon bond
exceeds the strike = (.82 in two years. The parameters are set as a = 0.2, b = (0.1 and
o = 0.02. The solution is showed in Figure 32.

It is interesting noticing that for deep in-the-money options the solution presents an
identity function behavior. This fact is due to the high probability of the option paying 1
at maturity, which means the holder is long in nothing but the zero-coupon bond itself.

We created another contract aiming to increase the number of discontinuities in the
pay-off. It is a double digital option which pays

1 ifP(T.S) - K >0
U(T,r) =<1 ifP(T.S)— K < —0.15

0 otherwise.

The payoff and the option prices are illustrated in Figures 33 and 34, respectively. The
same parameters were preserved for this case. Figure 35 shows the solution surface of
the EDP. We notice that it is smooth (except very near to the payoft, as it ought to be). At
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Figure 31: Digital Bond Option pay-off Figure 32: Digital Bond Option prices

this point, an important notice is to quote [6]: “It is well known that discontinuous initial
conditions adversely impact the accuracy of finite difference schemes. In particular,
the solution of the difference schemes exhibits oscillations just after ¢ = 0." This is
exactly what does not occur in the examples here, where the Modified Full Implicit
(finite difference) scheme is applied: the pricing solution on both examples is smooth
and remains free of the undesired spurious oscillations despite the presence of an abrupt
discontinuity in the terminal condition (see Figure 31).
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Figure 33: Double Digital Bond Option pay-off Figure 34: Double Digital Bond Option prices

4 CONCLUSIONS

We benefited from the good results that the numerical method gives to price deriva-
tives in the fixed-income market. We model the most common fixed-income contracts
and provided numerical examples, comparing them with their closed-form solutions -
when they exist. It is interesting that the Feynman-Kac procedure favors the engineer-
ing of a large class of financial instruments. The resulting PDEs can accommodate
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Double Digital Bond Option prices

Time to maturity 0

Bond price

Figure 35: Double Digital Bond Option prices surface

uncommon features of the contract, such as variable coupon rates, without compromise
the computational effort. If one chooses another interest rate dynamic - as opposed to
Vasicek, the results can be easily extended.
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APPENDIX A

Discounted Feynman-Kac Theorem [12]:
Let7T >0,h:R — R and

U(t,r) =E2 [e 5 mdup(rp)| 7| (65)
where 7 is the solution of the SDE Eq. (1) with initial condition » = ;. Then U(¢,r)
solves

ou oUu  c?0*U

il h—r)— 4+ — =rU 66

T M i (06)
with terminal condition

U(T,r) = h(r). (67)
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