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Abstract. This work proposes an approach using the Classical Integral Transform Technique
(CITT) for the heat transfer analysis in heat sinks used in electronic components. One-dimen-
sional fins and two-dimensional base formulations are solved separately, then, coupled to obtain
the final solution of the system. Since the thickness of the base is small compared to other
dimensions of the heat sink, a partial lumping approach in the z-direction is performed and the
final mathematical formulation is two-dimensional. Additionally, at the bottom of the heat sink
base, the heat flux coming from an electronic component is considered as the source term in the
formulation. In order to obtain the final solution, the CITT is applied and four different cases
are computed: the heat sink with zero, one, two and four fins. Finally, the results are obtained
and analyzed. The convergence analysis showed that CITT has a great performance having no
difficulties to obtain high accuracy with very few terms in the solution at positions away from
the heat source, and required more terms near the chip. Moreover, the proposed approach has
shown to be a good alternative method for this kind of problem.
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1 INTRODUCTION

Heat transfer in Solid-State Electronics (SSE) is a rolling and critical issue in the design of
modern electronic devices. Different industrial applications such as high-performance comput-
ers, aircraft, nuclear plant industries, and solar power applications use those chips for important
functions and depend on the good performance of these components.

Over the years, SSEs have decreased in size and, with more internal components concen-
trated, have been requiring more power dissipation in order to ensure safe and efficient perfor-
mance of the system. Peterson and Ortega [16] assert that the average component temperature
must be maintained equal or below the manufacturer’s maximum specified service temperature
in order to guarantee an effective performance and long service life. In contrast, a violation
of which can significantly compromise the reliability of the device. The failure rates of elec-
tronic components almost double when junction temperature increases by 10°C’ beyond oper-
ating temperatures [12] and for these reasons, the cooling of electronic components have been
substantially studied for over 30 years.

In 1988, Incropera [11] published a comprehensive review of convection cooling options in
which different types of heat sinks are mentioned. The parallel plate heat sink can suffer some
improvements for an enhanced heat transfer, which was largely described in the article. More
recently, another review was performed by Adham et al. [1] devoted to enhancing the overall
thermal and hydrodynamic performance of microchannel heat sinks. From this review, it can be
drawn the growing interest in microchannel heat sinks asserting the development of research in
this area.

The thermal dissipation promoted by heat sinks has motivated several works about analysis
and optimization of fins in heat sinks. The work of Teertstra et al. [20] presented an analyt-
ical model to obtain the average heat transfer rate for forced convection, air cooled, plate fin
heat sinks. The work of Lehtinen [13] analyzed both heat conduction and convection in fins
applying well-known analytical and experimental results for convective heat transfer. The ge-
ometry of the fin was also studied for maximizing the heat transfer. The work of Ong et al. [15]
analyzed different geometries of rectangular and cylindrical fins optimizations for maximum
heat dissipation on electronic components. The behavior of different geometric parameter heat
sinks with rectangular fins was also analyzed by Anselmo [2]. The work of Azarkish et al. [3]
investigated the geometry of the longitudinal fins with variable cross-sectional area achieving
its optimum fin profile using a genetic algorithm. On the other hand, Cuce and Cuce [9] tested
different rectangular fins configurations to produce the maximum heat loss in a specific volume
and length of fin numerically exposed to convection and radiation heat transfer.

Several recent works about heat sinks can be found in the literature, especially using analyti-
cal and numerical methodologies to evaluate the heat transfer promoted by the system. One can
mention the research developed by Tiirkakar and Okutucu-Ozyurt [21] in which a dimensional
optimization of silicon heat sinks for located multiple heat sources by minimizing the thermal
resistance at constant pumping power. In addition, the work of Singh et al. [18] used the LaPlace
transform technique to solve the temperature distribution of 1D fin with internal heat generation
and periodic boundary condition. The work [23] presents a heat transfer numerical simulation
of a heat sink installed on a square chip of a computer using the fourth-order Runge-Kutta
method to solve the non-linear heat transfer equation. Finally, the research developed by Malek
and Shabani [14] simulates macro and microscope heat transfer utilizing different formulations
for different scales. The used methodology is based on spectral methods, solving it numerically
by spectral discretization and finite differences method. The microscope analysis uses the dual-
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phase lag formulation and for the macroscope problems, based on the Fourier Law, commercial
software was used for the simulations.

The Integral Transform Technique is a powerful method to solve differential equations and
is classified as Classical (CITT) or Generalized (GITT). The CITT is an all analytical method
and is mostly applied in linear problems [7]. The CITT method consists in the development
of the appropriate transformation pair for the solution, then apply the integral transformation
to remove the spatial partial derivatives, reducing it to an Ordinary Differential Equation, and
solve the ODE under the boundary conditions. The temperature transformation is done by the
inversion formula, where the desired solution is obtained. The GITT is a hybrid analytical-
numerical technique and transforms nonlinear partial differential equation models to a coupled
nonlinear system of ordinary differential equations (ODEs) to be solved numerically. Chalhub
[6] enumerates some advantages of the Integral Transform Technique when compared to nu-
merical methods such as the reduction in processing time, not having a mesh for discretization
(the solution comes in a continuous domain) and faster convergence. Sphaier and Cotta [19] ap-
plied the Integral Transform Technique on the solution of a multidimensional partial differential
model within irregularly shaped domains. Braga Junior and Sphaier [4] also applied the GITT
in order to obtain the heat transfer solution in heterogeneous mediums such as Functionally
Graded Materials with variable properties. The Integral Transform Technique has been previ-
ously applied to electronic problems. Dantas [10] have applied the GITT for the solution of
heat transfer in microchips. An encapsulated microchip was considered with different thermal
conductivity layers over the chip thickness. Recently, Corréa and Chalhub [8] presented the so-
lution of Solid-State Electronics with one heat generation on its domain and solved by Classical
Integral Transform Technique. Furthermore, Pinheiro et al. [ 17] applied integral transforms for
solving the conjugated radiation-conduction in a finned-tube configuration transient problem
heat sinks.

This work proposes an analytical heat transfer approach to analyze heat sinks (HS) applied
to dissipate the heat generated in electronic components. Fins and base formulations are solved
separately, then, coupled to obtain the final solution of the system. First, the fin formulation is
developed and solved, then, the effective heat transfer coefficient for the fin is obtained. This
coefficient depends on the position of the fins and is used to obtain the solution for the base
of the heat sink. On the bottom of the base of the heat sink, the heated solid-state electronic
releases its heat on the HS to be dissipated. On the top of the base of the HS, the fins increase
the heat dissipation to the environment and, consequently, enhance the cooling of the chip.
Since the thickness of the base is small compared to other dimensions of the heat sink, a partial
lumping approach in the z-direction is performed and the final mathematical formulation is
two-dimensional, considering the heat flux arriving from the chip as a source term. In order
to obtain the final solution of the base, the Classical Integral Transform Technique (CITT) is
applied. In this case, however, the transformed equation cannot be solved analytically and
requires a numerical discretization. A truncation error is involved since the infinite summation
must be truncated. This error decreases as the number of summation terms (truncation order)
are increased, and the solution converges to a final value. Four different layouts are considered:
the heat sink with zero, one, two and four fins.

2 MATHEMATICAL FORMULATION FOR RECTANGULAR FINS

The formulation for the one-dimensional rectangular fins is obtained using the energy equa-
tion in steady-state [5]. The boundary conditions applied on the fin are fixed temperature at the
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base of the heat sink (isothermal base) and convection at the fin longitudinal end:

d&*T P
- _ — = < <
T2 A, (I'=T;) =0 for 0<z,<L,, (la)
dT
Thwmo=Tp,  —kas = W(T(La) — T}), (1b)
xa Tq=La

where T is the temperature, x, is variable for the fin, £, is the thermal conductivity of the
fin, A, is the transversal area of the fin, P, is the perimeter of the fin, / is the heat transfer
coefficient by convection , L, is the length of the fin, 7z indicates the temperature for the base
and T is the temperature of the surrounding air. The subscript a is used to indicate variables
and parameters related to the fin. Considering the thermal conductivity, the transversal area and
perimeter constants: Considering the thermal conductivity, the transversal area and perimeter
constants:
The nondimensionalization leads to the following mathematical formulation for the fin:

d*e N

MmO = < <

a2 m =0 for 0<¢ <1, (2a)

000)=1 @ = —Bi,O(1). (2b)
déa e,

The non-dimensional groups are defined as:

Zq T 1Ty . hL, o, Bi,P,L,
a = T == } B a — 9 - . 3
“w=1, 9@y Bu=goom A, ©)
The solution for (2a) is:
mecosh(m(l —&,)) + Bigsinh(m(l — &,
m cosh(m) + Bi, sinh(m)
The heat flux in each fin of the heat sink is:
doe
2
4, = _ka(T_Tf)_ ) (5)
dga Eu,:O
leading to:
. m (Bi, cosh(m) 4+ m sinh(m
i = k(7 — ) PPk V) — by~ ). ©

m cosh(m) + Bi, sinh(m)
Finally, the fin heat transfer coefficient A ;, is given by:

m (Bi, cosh(m) + msinh(m))
hfin = kq - - . (7
m cosh(m) + Bi, sinh(m)

3 PROBLEM FORMULATION

The mathematical formulation of the heat conduction at the base of the heat sink is given by
the energy equation in steady-state after applying a partial lumping approach in z-direction.
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For this work, a heat flux from the chip (¢,”) acting over the heat sink is considered. The
convection flux (¢”) occurs on the top surface of the heat sink without fins (Figure 1). On the
other hand, where the fin is located, the heat flux is the fin heat flux from the fin (g,”) of the
heat sink:

. {q-a// =hpin (T —Tf)  fae, <x<xep, ®)

qp — . . )
) 4" = Peono(T —T§) 2 < Xgip O T > Tgpye

where the subscript ¢ indicates where the fin length begins and f where it ends. The index &
indicates which fin is evaluated and the subscript a is used to indicate positions related to the
fin.
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Figure 1: Schematic heat sink view and bottom of the base of the heat sink indicating the
location of the chip

The definition of the effective heat transfer coefficient (), as can be concluded, depends of
its location on the base of the heat sink. On the region where the fins are located, / assume h;,
value and where there is only convection, i assume A, value:

h(a’;) _ hfl’n lf xaiK S xz g xafK . (9)
hcom; ifz < Taig OV T > Tof),

The formulation is showed bellow with its respective boundary conditions:

2 2 <1 M,
f (3 T(x,y) L9 T(w,y)> _ @) dy) oo <r<Land0<y<H (10)

ox? 0y? ) )
T T T T
a— =V, 8_ =Y 3_ =Y a_ = 07 (11)
oz |, o |,_; Y | ,—o Y |y

where T is the temperature, k is the thermal conductivity of the base, ¢/ is the heat flux from
the chip to the heat sink, T is the environment air temperature, / is the convection heat transfer
coefficient, = and y are the cartesian coordinates and L, H and ¢ are the dimensions of the heat
sink in =, y and z directions respectively.

The nondimensionalization of the problem leads to the following mathematical formulation:

R SINNCERC)

L B O = — < €L <n<

02 + o Bi(£)v© Q(&mn) for 0<E<1 and 0<n<1, (12)
o _, el _, ool _ o ool _
€ |0 M |0 € |y M |y
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The non-dimensional groups are defined as:

_r Y -1
L L
p= I’ V= 3 (15)
o L %

where /5 and ~y are aspect ratios, Bi() is the Biot number and depends of &, © is the dimension-
less temperature, £ and 7 are the dimensionless versions of z and ¥, and () is the heat flux acting
over the domain from the chip to the base of the heat sink. The chip is located at the center of
the base.

4 SOLUTION BY CLASSICAL INTEGRAL TRANSFORM TECHNIQUE

In order to solve the proposed problem, the Classical Integral Transform Technique (CITT)
is applied. This is an analytical technique that uses expansions of the sought solution in terms
of an infinite orthogonal basis of eigenfunctions, keeping the solution process always within a
continuous domain. In order to establish the transformation pair, the temperature field is written
as function of an orthogonal eigenfunctions obtained from the following auxiliary eigenvalue
problem known as the Helmholtz classic problem in cartesian coordinates, where V() are the
eigenfunctions and \,, are the eigenvalues. For this particular problem, the case where A= 0 also
exists.

The solution of the equation (12) is defined as:

n=0

where ©,,(£) and W, (1) are the functions to be solved separally in order to find the temperature
field and are eigenfunctions. ©,,(£) is also the transformed version of ©. N,, is the norm and is
defined as:

1
N, = / W2 dn. (18)
0

In order to establish the transformation pair, the temperature field is written as functions of
an orthogonal eigenfunctions obtained from the following auxiliary eigenvalue problem known
as the Helmholtz classic problem in cartesian coordinates, where W(7) are the eigenfunctions
and )\, are the eigenvalues. For this particular problem, the case where A = 0 also exists:

Wy () + AnWa(n) =0, (192)

v (0)=0, ¥ (1)=0. (19b)

Solving the differential equation, the solution shows that the eigenfunction is formed by sines
and cosines. Applying the boundary conditions, the term formed by sines is eliminated from

the solution and the values of the eigenvalues A, are found.
For A = 0, the solution of the eigenvalue problem is given by:

o(n) = 1, Ao =0, (20)



REUCP, Petropolis, Volume 14, n° 1, ISSN 2318-0692, 2020

and for A > 0:
Wn(n) = cos(Aum), M=nt for n=1,2.3,... 21)

To apply the CITT, the transformation pair is defined:

Transformation / Ov,,(n)dn, (22)
n( )an(n)
I _— 2
nversion = O = E N (23)

The equation (12) is written again, multiplied by W,, and integrated in the domain for 7. The
objective in this step is obtain the transformed equation:

L 920 9
e —V,dn+p / o —W,dn — Bi(¢ / ov,dn = / QWY dn. (24a)
Finally, the transformed equation is obtained, after simplifications, for A > 0:
Or — (B°A% + Bi(§)7)0, = —Qu(9), (25)
where Q,, is given by:

~ 1

Q.0 = [ QEnwtman 26)
0

The transformed boundary conditions are:

©,(0)=0, ©,(1)=0. 27)

This equation cannot be solved analytically because of the dependence of ¢ on Biot number.
For this reason, the equation (25) is solved numerically using the NDSolve subroutine available
on the software Mathematica 11.3 [22].

The transformed equation for A = 0 is given by:

O — (Bi(£)7)00 = —~Qo($), (28)

where Q) is given by:

1 1
- [ atcavatndn= | olnan 29)
0 0
The transformed boundary conditions are:
0,(0) =0, ©,(1)=0. (30)

Once again, the equation cannot be solved analytically for the same previous reason and the
equation (28) is solved numerically using the NDSolve subroutine.

Finally, in order to obtain the final temperature field, the inversion formula (23) must be
utilized and the summation must be truncated to a finite value (7,,,.x).
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S RESULTS AND DISCUSSION

After describing the problem, the parallel plate fins formulation and the solution methodol-
ogy, in this section the results are shown. For the chosen layouts, the heat sink (HS) presents a
squared shape, therefore the ratio aspect 5 = 1. The value of the non-dimensional group Bivy
for convection is 0.1, and 3 for the regions where the fins are located. The dimensionless heat

flux Q(&, n) is plotted in figure 2a.
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Figure 2: Contour plot of the heat flux and the fin layout for the considered cases

In the current work, four different layouts were tested. The first one was the heat sink without
fins, under the effects of heat flux from the chip and convection only. The second has its heat
dissipation increased by one fin and is shown on figure 2b. The third case introduces two fins
on the heat sink. The width of the fin affects the value of Biot and, for this reason, the same
width is applied in all the fins of this work. Figure 2c shows the two-fin heat sink. Finally, a
four-fin layout heat sink was tested, which is a more common heat-sink layout and is shown on
figure 2d. The domain of the chip and the fins are indicated on table 1.

The results of the convergence for the four different cases solved by CITT are presented in
table 2. Six different positions of the heat sink were selected for the convergence analysis and
because it was suspected the proximity to the chip would vary the number of the required terms
to be summed for full convergence, it was selected two positions far from the chip, one in the
middle of the chip, two positions very close to the boundaries of the chip and one not so far
neither so close to the chip. These different positions can be seen over the domain of the base
of the HS on Figure 3. The position, for instance, at the center of the heat sink and at the region
where the chip is located, (0.5, 0.5), is also where the maximum temperature of the HS is found.

The first part of table 2 shows the convergence obtained for no-fins case. It can be noticed
that the solution converged very fast on the far-from-chip locations. At the locations near the
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Table 1: Edges of chip and fins

Components of HS| & | §r | N | nf
heat flux 0.45(0.55]0.45]0.55
I-fin case 0.45(0.55| O 1
2-fin case 03|04
2-fin case 0.6]0.7
4-fin case 0.12]0.22
4-fin case 0.3410.44
4-fin case 0.56]0.66
4-fin case 0.78]0.88

(o) fol o) Nl Nl )
[ N Y Y (S

1.0F

&m
0.8
(0.2,0.7) (0.6,0.7)
0.6 (0.42,0.58)
u).S,O.S)
0.4/ (0.56,0.44)

(0.8,0.3)

0.0 0.2 04 0.6 0.8 1.0

Figure 3: Different positions evaluated for the temperature convergence of the base of the HS

chip, the temperature was also higher and took more terms to converge. While 10 terms were
sufficient for fully convergence at (0.2, 0.7), 200 terms were necessary for the convergence at
(0.56, 0.44).

The convergence results for one-fin case is shown on the second part of the table 2. Firstly,
it can be noticed a decreased on the temperature at all the selected positions of the heat sink,
justifying the application of fins in order to increase the heat dissipation. As can be seen, a
truncation order of n,,,x = 150 was necessary for the convergence of position (0.5,0.5) while
only 10 terms were necessary for the convergence for position (0.8,0.3). At (0.6,0.7), 20 terms
were required for its fully convergence.

The convergence results for the two-fin heat sink layout are presented on the third part of
table 2. The addiction of the second fin increased the heat dissipation and, consequently, the
temperature of the heat sink was lower in this case. In this scenario, also, at the center of the
heat sink, the full convergence required 250 terms instead of 150 of the previous cases. The
complexity of this case may be the reason which justifies more terms to be summed. This
increase of terms to be summed also happens at positions (0.42,0.58) and (0.56,0.44), which
required 250 and 200 terms for these positions solution convergence.

Finally, the last part of table 2 shows the results for the four-fin layout heat sink. Similarly
from the two-fin layout, more terms were necessary for the full convergence at (0.5,0.5), 350
terms in this position. In contrast, in this case, the position (0.42,0.58) had converged requiring
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Table 2: Temperature O (¢, 7)) convergence for different layouts of heat sink solved by CITT

No fin
Nmax | ©(0.2,0.7) | ©(0.42,0.58) | ©(0.5,0.5) | ©(0.56,0.44) | ©(0.6,0.7) | ©(0.8,0.3)
10 | 0599113 0.608526 0.619605 0.611228 0.602554 | 0.599113
20 | 0.599113 0.608530 0.619775 0.611252 0.602550 | 0.599113
50 | 0.599113 0.608526 0.619605 0.611228 0.602551 | 0.599113
100 | 0.599113 0.608526 0.619610 0.611224 0.602551 | 0.599113
150 | 0.599113 0.608526 0.619608 0.611224 0.602551 | 0.599113
200 | 0.599113 0.608526 0.619608 0.611225 0.602551 | 0.599113
250 | 0.599113 0.608526 0.619608 0.611225 0.602551 | 0.599113
300 | 0.599113 0.608526 0.619608 0.611225 0.602551 | 0.599113
350 | 0.599113 0.608526 0.619608 0.611225 0.602551 | 0.599113
One fin
Nmax | ©(0.2,0.7) | ©(0.42,0.58) | ©(0.5.0.5) | ©(0.56,0.44) | ©(0.6,0.7) | ©(0.8, 0.3)
10 | 0.153132 0.159512 0.168785 0.161935 0.153887 | 0.153132
20 | 0.153132 0.159414 0.169485 0.161726 0.153883 | 0.153132
50 | 0.153132 0.159411 0.169315 0.161702 0.153883 | 0.153132
100 | 0.153132 0.159411 0.169320 0.161698 0.153883 | 0.153132
150 | 0.153132 0.159411 0.169318 0.161698 0.153883 | 0.153132
200 | 0.153132 0.159411 0.169318 0.161699 0.153883 | 0.153132
250 | 0.153132 0.159411 0.169318 0.161699 0.153883 | 0.153132
300 | 0.153132 0.159411 0.169318 0.161699 0.153883 | 0.153132
Two fins
Nmax | ©(0.2,0.7) | ©(0.42,0.58) | ©(0.5,0.5) | ©(0.56,0.44) | ©(0.6,0.7) | ©(0.8,0.3)
10 | 0.0763385 | 0.0842956 | 0.0948784 | 0.0871884 | 0.0782018 | 0.0763385
20 | 0.0763385 | 0.0841974 | 0.0955795 | 0.0869797 | 0.0781976 | 0.0763385
50 | 0.0763385 | 0.0841937 | 0.0954094 | 0.0869557 | 0.0781982 | 0.0763385
100 | 0.0763385 | 0.0841937 | 0.0954142 | 0.0869515 | 0.0781981 | 0.0763385
150 | 0.0763385 | 0.0841936 | 0.0954121 | 0.0869519 | 0.0781981 | 0.0763385
200 | 0.0763385 | 0.0841935 | 0.0954119 | 0.0869521 | 0.0781981 | 0.0763385
250 | 0.0763385 | 0.0841936 | 0.0954122 | 0.0869520 | 0.0781981 | 0.0763385
300 | 0.0763385 | 0.0841936 | 0.0954122 | 0.0869520 | 0.0781981 | 0.0763385
350 | 0.0763385 | 0.0841936 | 0.0954122 | 0.0869520 | 0.0781981 | 0.0763385
Four fins
Nmax | ©(0.2,0.7) | ©(0.42,0.58) | ©(0.5,0.5) | ©(0.56,0.44) | ©(0.6,0.7) | ©(0.8,0.3)
10 | 0.0374997 | 0.0465666 0.057119 | 0.0494305 | 0.0405881 | 0.0374997
20 | 0.0374997 | 0.0464686 | 0.0578201 | 0.0492219 | 0.0405839 | 0.0374997
50 | 0.0374997 | 0.0464649 | 0.0576499 | 0.0491979 | 0.0405845 | 0.0374997
100 | 0.0374997 | 0.0464648 | 0.0576547 | 0.0491937 | 0.0405844 | 0.0374997
150 | 0.0374997 | 0.0464647 | 0.0576527 | 0.0491941 | 0.0405844 | 0.0374997
200 | 0.0374997 | 0.0464647 | 0.0576525 | 0.0491943 | 0.0405844 | 0.0374997
250 | 0.0374997 | 0.0464647 | 0.0576527 | 0.0491943 | 0.0405844 | 0.0374997
300 | 0.0374997 | 0.0464647 | 0.0576528 | 0.0491942 | 0.0405844 | 0.0374997
350 | 0.0374997 | 0.0464647 | 0.0576527 | 0.0491942 | 0.0405844 | 0.0374997
400 | 0.0374997 | 0.0464647 | 0.0576527 | 0.0491942 | 0.0405844 | 0.0374997
450 | 0.0374997 | 0.0464647 | 0.0576527 | 0.0491942 | 0.0405844 | 0.0374997
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less terms, 150, and (0.6,0.7) converged summing 100 terms, the same as the previous case. The
temperature along the heat sink had reduced about half from the two-fin layout, which states
that the efficiency of increasing fins to heat sinks in order to increase the heat dissipation and
reduce the temperature.

After analyzing the CITT convergence table 2, now it is shown the thermal profile of the
solution by CITT in all the four different layouts of heat sink. The figure 4a shows the solution
for the heat sink without fins, the one-fin heat sink solution is shown on figure 4b and the two-fin
and four-fin layout solution are figures 4c and 4d, respectively.

No fin
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Figure 4: Contour plot of the CITT solutions for the considered cases

Analyzing figure 4a, it can be noticed at first the isotherms curves around the region where
the chip is located. One important detail to be noticed is also the inner dark red region, which
indicates the most heated region of the base of the HS. This region indicates also the position
where the chip is located, releasing heat to be dissipated. The temperature in the no-fin heat
sink varies between a little more than 0.6175 and a little less than 0.5975. Figure 4b presents
one fin at the center of the heat sink and the increase of the heat dissipation on the region of the
fin is noticed by the darker blue stains exactly where the fin is found. The size of the inner dark
red isotherm is smaller in this case, indicating again a more intense heat dissipation. Also, all
the heat sink presents lower temperatures in comparison with the previous case without fins.

Figure 4c shows the solution for the two-fin case, which has a visual expressive reduction of
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temperature where the fins are located, at 0.3 < ¢ < 0.4 and 0.6 < ¢ < 0.7. Also, the inner
dark red region and the overall base, it presents lower temperatures from previous cases, the
maximum temperature on this heat sink does not reach 0.1. Finally, the four-fin layout heat sink
is shown in figure 4d. Because, this layout present equally spaced fins in all the extension of
the heat sink, the thermal profile of this case resembles the no-fin case. However, the maximum
temperature of the HS indicated at the inner dark red isotherm is reduced dramatically from
0.619608, of the no-fin case, to 0.0576527 with this current layout. This four-fin case is, then,
the most efficient heat sink layout shown in this work, dissipating more heat and reducing the
temperature for the lower values.

6 CONCLUSIONS

This paper presented the thermal analysis of a heat sink dissipating heat from a solid-state
electronic solved by Classical Integral Transform Technique. The mathematical formulation of
parallel plate fins was described and applied to the problem formulation for the base of the HS.
The £ dependence of the Biot number made it necessary the use of a numerical solver for the
transformed problem.

The convergence analysis showed that CITT has a great performance having no difficulties to
obtain high accuracy with very few terms in the solution summation far from the heat flux, and
required more terms near the chip location and increasing the number of fins of the problem.
The Classical Integral Transform Technique has shown to be a good alternative method for
this kind of problem. Finally, the introduction of fins resulted in the expected temperature
reduction. Moreover, the four-fin layout was the most efficient for dissipating heat and reducing
the temperature.
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